annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_12.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 71 FP additions, 51 FP multiplications,
Chris@82 32 * (or, 45 additions, 25 multiplications, 26 fused multiply/add),
Chris@82 33 * 56 stack variables, 2 constants, and 24 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/simd/hc2cbv.h"
Chris@82 36
Chris@82 37 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 41 {
Chris@82 42 INT m;
Chris@82 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@82 44 V Tk, Tw, Td, TA, T11, T1f, TF, TP, Tt, TB, TY, T1e;
Chris@82 45 {
Chris@82 46 V T2, Tm, T7, T8, Tp, Tq, T5, Tu, Tg, Tr, Tj, Tn, Tb, Tv, T3;
Chris@82 47 V T4, Te, Tf, Th, Ti, T9, Ta, T6, Tc, TZ, T10, TD, TE, To, Ts;
Chris@82 48 V TW, TX;
Chris@82 49 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 50 Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 51 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 52 T8 = VCONJ(T7);
Chris@82 53 Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@82 54 Tq = VCONJ(Tp);
Chris@82 55 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@82 56 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 57 T5 = VFMACONJ(T4, T3);
Chris@82 58 Tu = VFNMSCONJ(T4, T3);
Chris@82 59 Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 60 Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 61 Tg = VSUB(Te, Tf);
Chris@82 62 Tr = VADD(Te, Tf);
Chris@82 63 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 64 Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@82 65 Tj = VSUB(Th, Ti);
Chris@82 66 Tn = VADD(Ti, Th);
Chris@82 67 T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@82 68 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 69 Tb = VFMACONJ(Ta, T9);
Chris@82 70 Tv = VFMSCONJ(Ta, T9);
Chris@82 71 Tk = VFMACONJ(Tj, Tg);
Chris@82 72 Tw = VSUB(Tu, Tv);
Chris@82 73 T6 = VFNMS(LDK(KP500000000), T5, T2);
Chris@82 74 Tc = VFNMS(LDK(KP500000000), Tb, T8);
Chris@82 75 Td = VSUB(T6, Tc);
Chris@82 76 TA = VADD(T6, Tc);
Chris@82 77 TZ = VFMACONJ(Tn, Tm);
Chris@82 78 T10 = VFMACONJ(Tp, Tr);
Chris@82 79 T11 = VSUB(TZ, T10);
Chris@82 80 T1f = VADD(TZ, T10);
Chris@82 81 TD = VFNMSCONJ(Tj, Tg);
Chris@82 82 TE = VADD(Tu, Tv);
Chris@82 83 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
Chris@82 84 TP = VMUL(LDK(KP866025403), VADD(TE, TD));
Chris@82 85 To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm);
Chris@82 86 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
Chris@82 87 Tt = VSUB(To, Ts);
Chris@82 88 TB = VADD(To, Ts);
Chris@82 89 TW = VADD(T2, T5);
Chris@82 90 TX = VFMACONJ(T7, Tb);
Chris@82 91 TY = VSUB(TW, TX);
Chris@82 92 T1e = VADD(TW, TX);
Chris@82 93 }
Chris@82 94 {
Chris@82 95 V T1l, T12, TG, TU, Ty, T1k, TV, TC, Tz, TT, Tl, Tx, T1, T1j, TH;
Chris@82 96 V TI, T1n, T1m, T14, T13, T18, T1g, TQ, T16, TM, T1c, T17, T1d, TO, TN;
Chris@82 97 V T15, TK, TL, TJ, T1b, TR, TS, T1i, T1h, T1a, T19;
Chris@82 98 T1l = VADD(T1e, T1f);
Chris@82 99 TV = LDW(&(W[TWVL * 4]));
Chris@82 100 T12 = VZMULI(TV, VFNMSI(T11, TY));
Chris@82 101 TC = VSUB(TA, TB);
Chris@82 102 Tz = LDW(&(W[TWVL * 18]));
Chris@82 103 TG = VZMUL(Tz, VFNMSI(TF, TC));
Chris@82 104 TT = LDW(&(W[TWVL * 2]));
Chris@82 105 TU = VZMUL(TT, VFMAI(TF, TC));
Chris@82 106 Tl = VFMA(LDK(KP866025403), Tk, Td);
Chris@82 107 Tx = VFMA(LDK(KP866025403), Tw, Tt);
Chris@82 108 T1 = LDW(&(W[TWVL * 20]));
Chris@82 109 Ty = VZMULI(T1, VFNMSI(Tx, Tl));
Chris@82 110 T1j = LDW(&(W[0]));
Chris@82 111 T1k = VZMULI(T1j, VFMAI(Tx, Tl));
Chris@82 112 TH = VADD(Ty, TG);
Chris@82 113 ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)]));
Chris@82 114 TI = VCONJ(VSUB(TG, Ty));
Chris@82 115 ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)]));
Chris@82 116 T1n = VCONJ(VSUB(T1l, T1k));
Chris@82 117 ST(&(Rm[0]), T1n, -ms, &(Rm[0]));
Chris@82 118 T1m = VADD(T1k, T1l);
Chris@82 119 ST(&(Rp[0]), T1m, ms, &(Rp[0]));
Chris@82 120 T14 = VADD(TU, T12);
Chris@82 121 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
Chris@82 122 T13 = VCONJ(VSUB(TU, T12));
Chris@82 123 ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)]));
Chris@82 124 T17 = LDW(&(W[TWVL * 16]));
Chris@82 125 T18 = VZMULI(T17, VFMAI(T11, TY));
Chris@82 126 T1d = LDW(&(W[TWVL * 10]));
Chris@82 127 T1g = VZMUL(T1d, VSUB(T1e, T1f));
Chris@82 128 TO = VADD(TA, TB);
Chris@82 129 TN = LDW(&(W[TWVL * 6]));
Chris@82 130 TQ = VZMUL(TN, VFMAI(TP, TO));
Chris@82 131 T15 = LDW(&(W[TWVL * 14]));
Chris@82 132 T16 = VZMUL(T15, VFNMSI(TP, TO));
Chris@82 133 TK = VFNMS(LDK(KP866025403), Tk, Td);
Chris@82 134 TL = VFNMS(LDK(KP866025403), Tw, Tt);
Chris@82 135 TJ = LDW(&(W[TWVL * 8]));
Chris@82 136 TM = VZMULI(TJ, VFMAI(TL, TK));
Chris@82 137 T1b = LDW(&(W[TWVL * 12]));
Chris@82 138 T1c = VZMULI(T1b, VFNMSI(TL, TK));
Chris@82 139 TR = VADD(TM, TQ);
Chris@82 140 ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0]));
Chris@82 141 TS = VCONJ(VSUB(TQ, TM));
Chris@82 142 ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0]));
Chris@82 143 T1i = VCONJ(VSUB(T1g, T1c));
Chris@82 144 ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)]));
Chris@82 145 T1h = VADD(T1c, T1g);
Chris@82 146 ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)]));
Chris@82 147 T1a = VADD(T16, T18);
Chris@82 148 ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0]));
Chris@82 149 T19 = VCONJ(VSUB(T16, T18));
Chris@82 150 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
Chris@82 151 }
Chris@82 152 }
Chris@82 153 }
Chris@82 154 VLEAVE();
Chris@82 155 }
Chris@82 156
Chris@82 157 static const tw_instr twinstr[] = {
Chris@82 158 VTW(1, 1),
Chris@82 159 VTW(1, 2),
Chris@82 160 VTW(1, 3),
Chris@82 161 VTW(1, 4),
Chris@82 162 VTW(1, 5),
Chris@82 163 VTW(1, 6),
Chris@82 164 VTW(1, 7),
Chris@82 165 VTW(1, 8),
Chris@82 166 VTW(1, 9),
Chris@82 167 VTW(1, 10),
Chris@82 168 VTW(1, 11),
Chris@82 169 {TW_NEXT, VL, 0}
Chris@82 170 };
Chris@82 171
Chris@82 172 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} };
Chris@82 173
Chris@82 174 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
Chris@82 175 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
Chris@82 176 }
Chris@82 177 #else
Chris@82 178
Chris@82 179 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */
Chris@82 180
Chris@82 181 /*
Chris@82 182 * This function contains 71 FP additions, 30 FP multiplications,
Chris@82 183 * (or, 67 additions, 26 multiplications, 4 fused multiply/add),
Chris@82 184 * 90 stack variables, 2 constants, and 24 memory accesses
Chris@82 185 */
Chris@82 186 #include "rdft/simd/hc2cbv.h"
Chris@82 187
Chris@82 188 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 189 {
Chris@82 190 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 191 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 192 {
Chris@82 193 INT m;
Chris@82 194 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
Chris@82 195 V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3;
Chris@82 196 V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti;
Chris@82 197 V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12;
Chris@82 198 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@82 199 T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 200 T9 = VCONJ(T8);
Chris@82 201 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Chris@82 202 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 203 T5 = VCONJ(T4);
Chris@82 204 T6 = VADD(T3, T5);
Chris@82 205 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@82 206 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@82 207 Tb = VCONJ(Ta);
Chris@82 208 Td = VADD(Tb, Tc);
Chris@82 209 TY = VADD(T2, T6);
Chris@82 210 TZ = VADD(T9, Td);
Chris@82 211 T7 = VFNMS(LDK(KP500000000), T6, T2);
Chris@82 212 Te = VFNMS(LDK(KP500000000), Td, T9);
Chris@82 213 Tf = VSUB(T7, Te);
Chris@82 214 TC = VADD(T7, Te);
Chris@82 215 To = VSUB(T3, T5);
Chris@82 216 Tp = VSUB(Tb, Tc);
Chris@82 217 Tq = VMUL(LDK(KP866025403), VSUB(To, Tp));
Chris@82 218 TG = VADD(To, Tp);
Chris@82 219 Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 220 Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@82 221 Tv = VCONJ(Tu);
Chris@82 222 Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
Chris@82 223 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@82 224 Ti = VCONJ(VSUB(Tg, Th));
Chris@82 225 Ts = VCONJ(VADD(Tg, Th));
Chris@82 226 Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 227 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
Chris@82 228 Tl = VSUB(Tj, Tk);
Chris@82 229 Tw = VADD(Tj, Tk);
Chris@82 230 Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl));
Chris@82 231 TF = VADD(Ti, Tl);
Chris@82 232 Tt = VFNMS(LDK(KP500000000), Ts, Tr);
Chris@82 233 Tx = VFNMS(LDK(KP500000000), Tw, Tv);
Chris@82 234 Ty = VSUB(Tt, Tx);
Chris@82 235 TD = VADD(Tt, Tx);
Chris@82 236 T11 = VADD(Tr, Ts);
Chris@82 237 T12 = VADD(Tv, Tw);
Chris@82 238 T13 = VBYI(VSUB(T11, T12));
Chris@82 239 T1h = VADD(T11, T12);
Chris@82 240 {
Chris@82 241 V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10;
Chris@82 242 V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE;
Chris@82 243 V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15;
Chris@82 244 T1g = VADD(TY, TZ);
Chris@82 245 T1n = VADD(T1g, T1h);
Chris@82 246 T1f = LDW(&(W[TWVL * 10]));
Chris@82 247 T1i = VZMUL(T1f, VSUB(T1g, T1h));
Chris@82 248 T10 = VSUB(TY, TZ);
Chris@82 249 TX = LDW(&(W[TWVL * 4]));
Chris@82 250 T14 = VZMULI(TX, VSUB(T10, T13));
Chris@82 251 T19 = LDW(&(W[TWVL * 16]));
Chris@82 252 T1a = VZMULI(T19, VADD(T10, T13));
Chris@82 253 Tn = VSUB(Tf, Tm);
Chris@82 254 Tz = VBYI(VADD(Tq, Ty));
Chris@82 255 T1 = LDW(&(W[TWVL * 20]));
Chris@82 256 TA = VZMULI(T1, VSUB(Tn, Tz));
Chris@82 257 T1l = LDW(&(W[0]));
Chris@82 258 T1m = VZMULI(T1l, VADD(Tn, Tz));
Chris@82 259 TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF)));
Chris@82 260 TR = VADD(TC, TD);
Chris@82 261 TP = LDW(&(W[TWVL * 6]));
Chris@82 262 TS = VZMUL(TP, VADD(TQ, TR));
Chris@82 263 T17 = LDW(&(W[TWVL * 14]));
Chris@82 264 T18 = VZMUL(T17, VSUB(TR, TQ));
Chris@82 265 TM = VADD(Tf, Tm);
Chris@82 266 TN = VBYI(VSUB(Ty, Tq));
Chris@82 267 TL = LDW(&(W[TWVL * 8]));
Chris@82 268 TO = VZMULI(TL, VADD(TM, TN));
Chris@82 269 T1d = LDW(&(W[TWVL * 12]));
Chris@82 270 T1e = VZMULI(T1d, VSUB(TM, TN));
Chris@82 271 TE = VSUB(TC, TD);
Chris@82 272 TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG)));
Chris@82 273 TB = LDW(&(W[TWVL * 18]));
Chris@82 274 TI = VZMUL(TB, VSUB(TE, TH));
Chris@82 275 TV = LDW(&(W[TWVL * 2]));
Chris@82 276 TW = VZMUL(TV, VADD(TH, TE));
Chris@82 277 TJ = VADD(TA, TI);
Chris@82 278 ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)]));
Chris@82 279 T1p = VCONJ(VSUB(T1n, T1m));
Chris@82 280 ST(&(Rm[0]), T1p, -ms, &(Rm[0]));
Chris@82 281 T1k = VCONJ(VSUB(T1i, T1e));
Chris@82 282 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
Chris@82 283 TT = VADD(TO, TS);
Chris@82 284 ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0]));
Chris@82 285 T1o = VADD(T1m, T1n);
Chris@82 286 ST(&(Rp[0]), T1o, ms, &(Rp[0]));
Chris@82 287 TK = VCONJ(VSUB(TI, TA));
Chris@82 288 ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)]));
Chris@82 289 TU = VCONJ(VSUB(TS, TO));
Chris@82 290 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
Chris@82 291 T1j = VADD(T1e, T1i);
Chris@82 292 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
Chris@82 293 T1b = VCONJ(VSUB(T18, T1a));
Chris@82 294 ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0]));
Chris@82 295 T16 = VADD(TW, T14);
Chris@82 296 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
Chris@82 297 T1c = VADD(T18, T1a);
Chris@82 298 ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0]));
Chris@82 299 T15 = VCONJ(VSUB(TW, T14));
Chris@82 300 ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)]));
Chris@82 301 }
Chris@82 302 }
Chris@82 303 }
Chris@82 304 VLEAVE();
Chris@82 305 }
Chris@82 306
Chris@82 307 static const tw_instr twinstr[] = {
Chris@82 308 VTW(1, 1),
Chris@82 309 VTW(1, 2),
Chris@82 310 VTW(1, 3),
Chris@82 311 VTW(1, 4),
Chris@82 312 VTW(1, 5),
Chris@82 313 VTW(1, 6),
Chris@82 314 VTW(1, 7),
Chris@82 315 VTW(1, 8),
Chris@82 316 VTW(1, 9),
Chris@82 317 VTW(1, 10),
Chris@82 318 VTW(1, 11),
Chris@82 319 {TW_NEXT, VL, 0}
Chris@82 320 };
Chris@82 321
Chris@82 322 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} };
Chris@82 323
Chris@82 324 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
Chris@82 325 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
Chris@82 326 }
Chris@82 327 #endif