annotate src/fftw-3.3.8/rdft/scalar/r2cf/r2cf_7.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:06:26 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name r2cf_7 -include rdft/scalar/r2cf.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 24 FP additions, 18 FP multiplications,
Chris@82 32 * (or, 9 additions, 3 multiplications, 15 fused multiply/add),
Chris@82 33 * 23 stack variables, 6 constants, and 14 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/r2cf.h"
Chris@82 36
Chris@82 37 static void r2cf_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@82 40 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@82 41 DK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@82 42 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@82 43 DK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@82 44 DK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@82 45 {
Chris@82 46 INT i;
Chris@82 47 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
Chris@82 48 E T1, T4, Ta, T7, Tb, Td, Tj, Ti, Th, Tf;
Chris@82 49 T1 = R0[0];
Chris@82 50 {
Chris@82 51 E T2, T3, T8, T9, T5, T6;
Chris@82 52 T2 = R1[0];
Chris@82 53 T3 = R0[WS(rs, 3)];
Chris@82 54 T4 = T2 + T3;
Chris@82 55 T8 = R1[WS(rs, 1)];
Chris@82 56 T9 = R0[WS(rs, 2)];
Chris@82 57 Ta = T8 + T9;
Chris@82 58 T5 = R0[WS(rs, 1)];
Chris@82 59 T6 = R1[WS(rs, 2)];
Chris@82 60 T7 = T5 + T6;
Chris@82 61 Tb = FNMS(KP356895867, Ta, T7);
Chris@82 62 Td = FNMS(KP356895867, T4, Ta);
Chris@82 63 Tj = T6 - T5;
Chris@82 64 Ti = T9 - T8;
Chris@82 65 Th = T3 - T2;
Chris@82 66 Tf = FNMS(KP356895867, T7, T4);
Chris@82 67 }
Chris@82 68 {
Chris@82 69 E Tc, Tm, Te, Tk, Tg, Tl;
Chris@82 70 Tc = FNMS(KP692021471, Tb, T4);
Chris@82 71 Cr[WS(csr, 3)] = FNMS(KP900968867, Tc, T1);
Chris@82 72 Tm = FNMS(KP554958132, Th, Tj);
Chris@82 73 Ci[WS(csi, 3)] = KP974927912 * (FNMS(KP801937735, Tm, Ti));
Chris@82 74 Te = FNMS(KP692021471, Td, T7);
Chris@82 75 Cr[WS(csr, 2)] = FNMS(KP900968867, Te, T1);
Chris@82 76 Tk = FMA(KP554958132, Tj, Ti);
Chris@82 77 Ci[WS(csi, 2)] = KP974927912 * (FNMS(KP801937735, Tk, Th));
Chris@82 78 Cr[0] = T1 + T4 + T7 + Ta;
Chris@82 79 Tg = FNMS(KP692021471, Tf, Ta);
Chris@82 80 Cr[WS(csr, 1)] = FNMS(KP900968867, Tg, T1);
Chris@82 81 Tl = FMA(KP554958132, Ti, Th);
Chris@82 82 Ci[WS(csi, 1)] = KP974927912 * (FMA(KP801937735, Tl, Tj));
Chris@82 83 }
Chris@82 84 }
Chris@82 85 }
Chris@82 86 }
Chris@82 87
Chris@82 88 static const kr2c_desc desc = { 7, "r2cf_7", {9, 3, 15, 0}, &GENUS };
Chris@82 89
Chris@82 90 void X(codelet_r2cf_7) (planner *p) {
Chris@82 91 X(kr2c_register) (p, r2cf_7, &desc);
Chris@82 92 }
Chris@82 93
Chris@82 94 #else
Chris@82 95
Chris@82 96 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 7 -name r2cf_7 -include rdft/scalar/r2cf.h */
Chris@82 97
Chris@82 98 /*
Chris@82 99 * This function contains 24 FP additions, 18 FP multiplications,
Chris@82 100 * (or, 12 additions, 6 multiplications, 12 fused multiply/add),
Chris@82 101 * 20 stack variables, 6 constants, and 14 memory accesses
Chris@82 102 */
Chris@82 103 #include "rdft/scalar/r2cf.h"
Chris@82 104
Chris@82 105 static void r2cf_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 106 {
Chris@82 107 DK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@82 108 DK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@82 109 DK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@82 110 DK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@82 111 DK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@82 112 DK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@82 113 {
Chris@82 114 INT i;
Chris@82 115 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
Chris@82 116 E T1, Ta, Tb, T4, Td, T7, Tc, T8, T9;
Chris@82 117 T1 = R0[0];
Chris@82 118 T8 = R1[0];
Chris@82 119 T9 = R0[WS(rs, 3)];
Chris@82 120 Ta = T8 + T9;
Chris@82 121 Tb = T9 - T8;
Chris@82 122 {
Chris@82 123 E T2, T3, T5, T6;
Chris@82 124 T2 = R0[WS(rs, 1)];
Chris@82 125 T3 = R1[WS(rs, 2)];
Chris@82 126 T4 = T2 + T3;
Chris@82 127 Td = T3 - T2;
Chris@82 128 T5 = R1[WS(rs, 1)];
Chris@82 129 T6 = R0[WS(rs, 2)];
Chris@82 130 T7 = T5 + T6;
Chris@82 131 Tc = T6 - T5;
Chris@82 132 }
Chris@82 133 Ci[WS(csi, 2)] = FNMS(KP781831482, Tc, KP974927912 * Tb) - (KP433883739 * Td);
Chris@82 134 Ci[WS(csi, 1)] = FMA(KP781831482, Tb, KP974927912 * Td) + (KP433883739 * Tc);
Chris@82 135 Cr[WS(csr, 2)] = FMA(KP623489801, T7, T1) + FNMA(KP900968867, T4, KP222520933 * Ta);
Chris@82 136 Ci[WS(csi, 3)] = FMA(KP433883739, Tb, KP974927912 * Tc) - (KP781831482 * Td);
Chris@82 137 Cr[WS(csr, 3)] = FMA(KP623489801, T4, T1) + FNMA(KP222520933, T7, KP900968867 * Ta);
Chris@82 138 Cr[WS(csr, 1)] = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
Chris@82 139 Cr[0] = T1 + Ta + T4 + T7;
Chris@82 140 }
Chris@82 141 }
Chris@82 142 }
Chris@82 143
Chris@82 144 static const kr2c_desc desc = { 7, "r2cf_7", {12, 6, 12, 0}, &GENUS };
Chris@82 145
Chris@82 146 void X(codelet_r2cf_7) (planner *p) {
Chris@82 147 X(kr2c_register) (p, r2cf_7, &desc);
Chris@82 148 }
Chris@82 149
Chris@82 150 #endif