annotate src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_12.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:06:43 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include rdft/scalar/r2cfII.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 45 FP additions, 24 FP multiplications,
Chris@82 32 * (or, 21 additions, 0 multiplications, 24 fused multiply/add),
Chris@82 33 * 28 stack variables, 3 constants, and 24 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/r2cfII.h"
Chris@82 36
Chris@82 37 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 42 {
Chris@82 43 INT i;
Chris@82 44 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@82 45 E Tx, Ty, T8, Tz, Tl, Tm, Tv, T5, TA, Tt, Te, Tf, Tu, T6, T7;
Chris@82 46 E Tw, TF, TG;
Chris@82 47 Tx = R0[WS(rs, 3)];
Chris@82 48 T6 = R0[WS(rs, 5)];
Chris@82 49 T7 = R0[WS(rs, 1)];
Chris@82 50 Ty = T6 + T7;
Chris@82 51 T8 = T6 - T7;
Chris@82 52 Tz = FMA(KP500000000, Ty, Tx);
Chris@82 53 {
Chris@82 54 E Th, Ti, Tj, Tk;
Chris@82 55 Th = R1[WS(rs, 4)];
Chris@82 56 Ti = R1[WS(rs, 2)];
Chris@82 57 Tj = R1[0];
Chris@82 58 Tk = Ti - Tj;
Chris@82 59 Tl = FMA(KP500000000, Tk, Th);
Chris@82 60 Tm = Ti + Tj;
Chris@82 61 Tv = Ti - Tj - Th;
Chris@82 62 }
Chris@82 63 {
Chris@82 64 E T1, T2, T3, T4;
Chris@82 65 T1 = R0[0];
Chris@82 66 T2 = R0[WS(rs, 2)];
Chris@82 67 T3 = R0[WS(rs, 4)];
Chris@82 68 T4 = T2 - T3;
Chris@82 69 T5 = FMA(KP500000000, T4, T1);
Chris@82 70 TA = T3 + T2;
Chris@82 71 Tt = T1 + T3 - T2;
Chris@82 72 }
Chris@82 73 {
Chris@82 74 E Ta, Tb, Tc, Td;
Chris@82 75 Ta = R1[WS(rs, 1)];
Chris@82 76 Tb = R1[WS(rs, 3)];
Chris@82 77 Tc = R1[WS(rs, 5)];
Chris@82 78 Td = Tb - Tc;
Chris@82 79 Te = FMA(KP500000000, Td, Ta);
Chris@82 80 Tf = Tc + Tb;
Chris@82 81 Tu = Ta + Tc - Tb;
Chris@82 82 }
Chris@82 83 Tw = Tu + Tv;
Chris@82 84 Cr[WS(csr, 1)] = FNMS(KP707106781, Tw, Tt);
Chris@82 85 Cr[WS(csr, 4)] = FMA(KP707106781, Tw, Tt);
Chris@82 86 TF = Tx - Ty;
Chris@82 87 TG = Tv - Tu;
Chris@82 88 Ci[WS(csi, 4)] = FMS(KP707106781, TG, TF);
Chris@82 89 Ci[WS(csi, 1)] = FMA(KP707106781, TG, TF);
Chris@82 90 {
Chris@82 91 E T9, TD, To, TE, Tg, Tn;
Chris@82 92 T9 = FNMS(KP866025403, T8, T5);
Chris@82 93 TD = FNMS(KP866025403, TA, Tz);
Chris@82 94 Tg = FNMS(KP866025403, Tf, Te);
Chris@82 95 Tn = FNMS(KP866025403, Tm, Tl);
Chris@82 96 To = Tg - Tn;
Chris@82 97 TE = Tg + Tn;
Chris@82 98 Cr[WS(csr, 5)] = FNMS(KP707106781, To, T9);
Chris@82 99 Ci[WS(csi, 3)] = FMA(KP707106781, TE, TD);
Chris@82 100 Cr[0] = FMA(KP707106781, To, T9);
Chris@82 101 Ci[WS(csi, 2)] = FMS(KP707106781, TE, TD);
Chris@82 102 }
Chris@82 103 {
Chris@82 104 E Tp, TB, Ts, TC, Tq, Tr;
Chris@82 105 Tp = FMA(KP866025403, T8, T5);
Chris@82 106 TB = FMA(KP866025403, TA, Tz);
Chris@82 107 Tq = FMA(KP866025403, Tm, Tl);
Chris@82 108 Tr = FMA(KP866025403, Tf, Te);
Chris@82 109 Ts = Tq - Tr;
Chris@82 110 TC = Tr + Tq;
Chris@82 111 Cr[WS(csr, 3)] = FNMS(KP707106781, Ts, Tp);
Chris@82 112 Ci[WS(csi, 5)] = FNMS(KP707106781, TC, TB);
Chris@82 113 Cr[WS(csr, 2)] = FMA(KP707106781, Ts, Tp);
Chris@82 114 Ci[0] = -(FMA(KP707106781, TC, TB));
Chris@82 115 }
Chris@82 116 }
Chris@82 117 }
Chris@82 118 }
Chris@82 119
Chris@82 120 static const kr2c_desc desc = { 12, "r2cfII_12", {21, 0, 24, 0}, &GENUS };
Chris@82 121
Chris@82 122 void X(codelet_r2cfII_12) (planner *p) {
Chris@82 123 X(kr2c_register) (p, r2cfII_12, &desc);
Chris@82 124 }
Chris@82 125
Chris@82 126 #else
Chris@82 127
Chris@82 128 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include rdft/scalar/r2cfII.h */
Chris@82 129
Chris@82 130 /*
Chris@82 131 * This function contains 43 FP additions, 12 FP multiplications,
Chris@82 132 * (or, 39 additions, 8 multiplications, 4 fused multiply/add),
Chris@82 133 * 28 stack variables, 5 constants, and 24 memory accesses
Chris@82 134 */
Chris@82 135 #include "rdft/scalar/r2cfII.h"
Chris@82 136
Chris@82 137 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 138 {
Chris@82 139 DK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@82 140 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 141 DK(KP612372435, +0.612372435695794524549321018676472847991486870);
Chris@82 142 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 143 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 144 {
Chris@82 145 INT i;
Chris@82 146 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@82 147 E Tx, Tg, T4, Tz, Ty, Tj, TA, T9, Tm, Tl, Te, Tp, To, Tf, TE;
Chris@82 148 E TF;
Chris@82 149 {
Chris@82 150 E T1, T3, T2, Th, Ti;
Chris@82 151 T1 = R0[0];
Chris@82 152 T3 = R0[WS(rs, 2)];
Chris@82 153 T2 = R0[WS(rs, 4)];
Chris@82 154 Tx = KP866025403 * (T2 + T3);
Chris@82 155 Tg = FMA(KP500000000, T3 - T2, T1);
Chris@82 156 T4 = T1 + T2 - T3;
Chris@82 157 Tz = R0[WS(rs, 3)];
Chris@82 158 Th = R0[WS(rs, 5)];
Chris@82 159 Ti = R0[WS(rs, 1)];
Chris@82 160 Ty = Th + Ti;
Chris@82 161 Tj = KP866025403 * (Th - Ti);
Chris@82 162 TA = FMA(KP500000000, Ty, Tz);
Chris@82 163 }
Chris@82 164 {
Chris@82 165 E T5, T6, T7, T8;
Chris@82 166 T5 = R1[WS(rs, 1)];
Chris@82 167 T6 = R1[WS(rs, 5)];
Chris@82 168 T7 = R1[WS(rs, 3)];
Chris@82 169 T8 = T6 - T7;
Chris@82 170 T9 = T5 + T8;
Chris@82 171 Tm = KP612372435 * (T6 + T7);
Chris@82 172 Tl = FNMS(KP353553390, T8, KP707106781 * T5);
Chris@82 173 }
Chris@82 174 {
Chris@82 175 E Td, Ta, Tb, Tc;
Chris@82 176 Td = R1[WS(rs, 4)];
Chris@82 177 Ta = R1[WS(rs, 2)];
Chris@82 178 Tb = R1[0];
Chris@82 179 Tc = Ta - Tb;
Chris@82 180 Te = Tc - Td;
Chris@82 181 Tp = FMA(KP353553390, Tc, KP707106781 * Td);
Chris@82 182 To = KP612372435 * (Ta + Tb);
Chris@82 183 }
Chris@82 184 Tf = KP707106781 * (T9 + Te);
Chris@82 185 Cr[WS(csr, 1)] = T4 - Tf;
Chris@82 186 Cr[WS(csr, 4)] = T4 + Tf;
Chris@82 187 TE = KP707106781 * (Te - T9);
Chris@82 188 TF = Tz - Ty;
Chris@82 189 Ci[WS(csi, 4)] = TE - TF;
Chris@82 190 Ci[WS(csi, 1)] = TE + TF;
Chris@82 191 {
Chris@82 192 E Tk, TB, Tr, Tw, Tn, Tq;
Chris@82 193 Tk = Tg - Tj;
Chris@82 194 TB = Tx - TA;
Chris@82 195 Tn = Tl - Tm;
Chris@82 196 Tq = To - Tp;
Chris@82 197 Tr = Tn + Tq;
Chris@82 198 Tw = Tn - Tq;
Chris@82 199 Cr[WS(csr, 5)] = Tk - Tr;
Chris@82 200 Ci[WS(csi, 2)] = Tw + TB;
Chris@82 201 Cr[0] = Tk + Tr;
Chris@82 202 Ci[WS(csi, 3)] = Tw - TB;
Chris@82 203 }
Chris@82 204 {
Chris@82 205 E Ts, TD, Tv, TC, Tt, Tu;
Chris@82 206 Ts = Tg + Tj;
Chris@82 207 TD = Tx + TA;
Chris@82 208 Tt = To + Tp;
Chris@82 209 Tu = Tm + Tl;
Chris@82 210 Tv = Tt - Tu;
Chris@82 211 TC = Tu + Tt;
Chris@82 212 Cr[WS(csr, 3)] = Ts - Tv;
Chris@82 213 Ci[WS(csi, 5)] = TD - TC;
Chris@82 214 Cr[WS(csr, 2)] = Ts + Tv;
Chris@82 215 Ci[0] = -(TC + TD);
Chris@82 216 }
Chris@82 217 }
Chris@82 218 }
Chris@82 219 }
Chris@82 220
Chris@82 221 static const kr2c_desc desc = { 12, "r2cfII_12", {39, 8, 4, 0}, &GENUS };
Chris@82 222
Chris@82 223 void X(codelet_r2cfII_12) (planner *p) {
Chris@82 224 X(kr2c_register) (p, r2cfII_12, &desc);
Chris@82 225 }
Chris@82 226
Chris@82 227 #endif