annotate src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_6.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:10 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 58 FP additions, 44 FP multiplications,
Chris@82 32 * (or, 36 additions, 22 multiplications, 22 fused multiply/add),
Chris@82 33 * 27 stack variables, 2 constants, and 24 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/hc2cf.h"
Chris@82 36
Chris@82 37 static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 41 {
Chris@82 42 INT m;
Chris@82 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 44 E T3, TQ, TJ, T12, Tu, TX, TB, T10, Td, TS, Tk, TV;
Chris@82 45 {
Chris@82 46 E T1, T2, TI, TD, TE, TF;
Chris@82 47 T1 = Ip[0];
Chris@82 48 T2 = Im[0];
Chris@82 49 TI = T1 + T2;
Chris@82 50 TD = Rm[0];
Chris@82 51 TE = Rp[0];
Chris@82 52 TF = TD - TE;
Chris@82 53 T3 = T1 - T2;
Chris@82 54 TQ = TE + TD;
Chris@82 55 {
Chris@82 56 E TC, TG, TH, T11;
Chris@82 57 TC = W[0];
Chris@82 58 TG = TC * TF;
Chris@82 59 TH = W[1];
Chris@82 60 T11 = TH * TF;
Chris@82 61 TJ = FNMS(TH, TI, TG);
Chris@82 62 T12 = FMA(TC, TI, T11);
Chris@82 63 }
Chris@82 64 }
Chris@82 65 {
Chris@82 66 E To, TA, Tt, Tx;
Chris@82 67 {
Chris@82 68 E Tm, Tn, Tr, Ts;
Chris@82 69 Tm = Rm[WS(rs, 2)];
Chris@82 70 Tn = Rp[WS(rs, 2)];
Chris@82 71 To = Tm - Tn;
Chris@82 72 TA = Tn + Tm;
Chris@82 73 Tr = Ip[WS(rs, 2)];
Chris@82 74 Ts = Im[WS(rs, 2)];
Chris@82 75 Tt = Tr + Ts;
Chris@82 76 Tx = Tr - Ts;
Chris@82 77 }
Chris@82 78 {
Chris@82 79 E Tp, TW, Tl, Tq;
Chris@82 80 Tl = W[8];
Chris@82 81 Tp = Tl * To;
Chris@82 82 TW = Tl * Tt;
Chris@82 83 Tq = W[9];
Chris@82 84 Tu = FNMS(Tq, Tt, Tp);
Chris@82 85 TX = FMA(Tq, To, TW);
Chris@82 86 }
Chris@82 87 {
Chris@82 88 E Tw, Ty, Tz, TZ;
Chris@82 89 Tw = W[6];
Chris@82 90 Ty = Tw * Tx;
Chris@82 91 Tz = W[7];
Chris@82 92 TZ = Tz * Tx;
Chris@82 93 TB = FNMS(Tz, TA, Ty);
Chris@82 94 T10 = FMA(Tw, TA, TZ);
Chris@82 95 }
Chris@82 96 }
Chris@82 97 {
Chris@82 98 E T7, Tg, Tc, Tj;
Chris@82 99 {
Chris@82 100 E T5, T6, Ta, Tb;
Chris@82 101 T5 = Ip[WS(rs, 1)];
Chris@82 102 T6 = Im[WS(rs, 1)];
Chris@82 103 T7 = T5 + T6;
Chris@82 104 Tg = T5 - T6;
Chris@82 105 Ta = Rp[WS(rs, 1)];
Chris@82 106 Tb = Rm[WS(rs, 1)];
Chris@82 107 Tc = Ta - Tb;
Chris@82 108 Tj = Ta + Tb;
Chris@82 109 }
Chris@82 110 {
Chris@82 111 E T4, T8, T9, TR;
Chris@82 112 T4 = W[5];
Chris@82 113 T8 = T4 * T7;
Chris@82 114 T9 = W[4];
Chris@82 115 TR = T9 * T7;
Chris@82 116 Td = FMA(T9, Tc, T8);
Chris@82 117 TS = FNMS(T4, Tc, TR);
Chris@82 118 }
Chris@82 119 {
Chris@82 120 E Tf, Th, Ti, TU;
Chris@82 121 Tf = W[2];
Chris@82 122 Th = Tf * Tg;
Chris@82 123 Ti = W[3];
Chris@82 124 TU = Ti * Tg;
Chris@82 125 Tk = FNMS(Ti, Tj, Th);
Chris@82 126 TV = FMA(Tf, Tj, TU);
Chris@82 127 }
Chris@82 128 }
Chris@82 129 {
Chris@82 130 E Te, T1d, TL, T1g, T1c, T1e, T19, T1f;
Chris@82 131 Te = T3 - Td;
Chris@82 132 T1d = TQ + TS;
Chris@82 133 {
Chris@82 134 E Tv, TK, T1a, T1b;
Chris@82 135 Tv = Tk + Tu;
Chris@82 136 TK = TB + TJ;
Chris@82 137 TL = Tv + TK;
Chris@82 138 T1g = Tv - TK;
Chris@82 139 T1a = TV + TX;
Chris@82 140 T1b = T10 + T12;
Chris@82 141 T1c = T1a - T1b;
Chris@82 142 T1e = T1a + T1b;
Chris@82 143 }
Chris@82 144 Ip[0] = KP500000000 * (Te + TL);
Chris@82 145 Rp[0] = KP500000000 * (T1d + T1e);
Chris@82 146 T19 = FNMS(KP500000000, TL, Te);
Chris@82 147 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP866025403, T1c, T19));
Chris@82 148 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP866025403, T1c, T19)));
Chris@82 149 T1f = FNMS(KP500000000, T1e, T1d);
Chris@82 150 Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP866025403, T1g, T1f));
Chris@82 151 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T1g, T1f));
Chris@82 152 }
Chris@82 153 {
Chris@82 154 E TP, TT, TO, T16, T14, T18, T15, T17;
Chris@82 155 TP = Td + T3;
Chris@82 156 TT = TQ - TS;
Chris@82 157 {
Chris@82 158 E TM, TN, TY, T13;
Chris@82 159 TM = Tu - Tk;
Chris@82 160 TN = TJ - TB;
Chris@82 161 TO = TM + TN;
Chris@82 162 T16 = TN - TM;
Chris@82 163 TY = TV - TX;
Chris@82 164 T13 = T10 - T12;
Chris@82 165 T14 = TY + T13;
Chris@82 166 T18 = T13 - TY;
Chris@82 167 }
Chris@82 168 Im[WS(rs, 2)] = KP500000000 * (TO - TP);
Chris@82 169 Rm[WS(rs, 2)] = KP500000000 * (TT + T14);
Chris@82 170 T15 = FNMS(KP500000000, T14, TT);
Chris@82 171 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T16, T15));
Chris@82 172 Rm[0] = KP500000000 * (FNMS(KP866025403, T16, T15));
Chris@82 173 T17 = FMA(KP500000000, TO, TP);
Chris@82 174 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T18, T17));
Chris@82 175 Im[0] = -(KP500000000 * (FNMS(KP866025403, T18, T17)));
Chris@82 176 }
Chris@82 177 }
Chris@82 178 }
Chris@82 179 }
Chris@82 180
Chris@82 181 static const tw_instr twinstr[] = {
Chris@82 182 {TW_FULL, 1, 6},
Chris@82 183 {TW_NEXT, 1, 0}
Chris@82 184 };
Chris@82 185
Chris@82 186 static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, {36, 22, 22, 0} };
Chris@82 187
Chris@82 188 void X(codelet_hc2cfdft_6) (planner *p) {
Chris@82 189 X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
Chris@82 190 }
Chris@82 191 #else
Chris@82 192
Chris@82 193 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */
Chris@82 194
Chris@82 195 /*
Chris@82 196 * This function contains 58 FP additions, 36 FP multiplications,
Chris@82 197 * (or, 44 additions, 22 multiplications, 14 fused multiply/add),
Chris@82 198 * 40 stack variables, 3 constants, and 24 memory accesses
Chris@82 199 */
Chris@82 200 #include "rdft/scalar/hc2cf.h"
Chris@82 201
Chris@82 202 static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 203 {
Chris@82 204 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 205 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 206 DK(KP433012701, +0.433012701892219323381861585376468091735701313);
Chris@82 207 {
Chris@82 208 INT m;
Chris@82 209 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 210 E T3, TM, Tc, TN, Ts, T10, TI, TR, TF, T11, TH, TU;
Chris@82 211 {
Chris@82 212 E T1, T2, TD, Tz, TA, TB, T7, Tf, Tb, Th, Tq, Tw, Tm, Tu, T4;
Chris@82 213 E T8;
Chris@82 214 {
Chris@82 215 E T5, T6, T9, Ta;
Chris@82 216 T1 = Ip[0];
Chris@82 217 T2 = Im[0];
Chris@82 218 TD = T1 + T2;
Chris@82 219 Tz = Rm[0];
Chris@82 220 TA = Rp[0];
Chris@82 221 TB = Tz - TA;
Chris@82 222 T5 = Ip[WS(rs, 1)];
Chris@82 223 T6 = Im[WS(rs, 1)];
Chris@82 224 T7 = T5 + T6;
Chris@82 225 Tf = T5 - T6;
Chris@82 226 T9 = Rp[WS(rs, 1)];
Chris@82 227 Ta = Rm[WS(rs, 1)];
Chris@82 228 Tb = T9 - Ta;
Chris@82 229 Th = T9 + Ta;
Chris@82 230 {
Chris@82 231 E To, Tp, Tk, Tl;
Chris@82 232 To = Rp[WS(rs, 2)];
Chris@82 233 Tp = Rm[WS(rs, 2)];
Chris@82 234 Tq = To - Tp;
Chris@82 235 Tw = To + Tp;
Chris@82 236 Tk = Ip[WS(rs, 2)];
Chris@82 237 Tl = Im[WS(rs, 2)];
Chris@82 238 Tm = Tk + Tl;
Chris@82 239 Tu = Tk - Tl;
Chris@82 240 }
Chris@82 241 }
Chris@82 242 T3 = T1 - T2;
Chris@82 243 TM = TA + Tz;
Chris@82 244 T4 = W[5];
Chris@82 245 T8 = W[4];
Chris@82 246 Tc = FMA(T4, T7, T8 * Tb);
Chris@82 247 TN = FNMS(T4, Tb, T8 * T7);
Chris@82 248 {
Chris@82 249 E Ti, TP, Tr, TQ;
Chris@82 250 {
Chris@82 251 E Te, Tg, Tj, Tn;
Chris@82 252 Te = W[2];
Chris@82 253 Tg = W[3];
Chris@82 254 Ti = FNMS(Tg, Th, Te * Tf);
Chris@82 255 TP = FMA(Tg, Tf, Te * Th);
Chris@82 256 Tj = W[9];
Chris@82 257 Tn = W[8];
Chris@82 258 Tr = FMA(Tj, Tm, Tn * Tq);
Chris@82 259 TQ = FNMS(Tj, Tq, Tn * Tm);
Chris@82 260 }
Chris@82 261 Ts = Ti - Tr;
Chris@82 262 T10 = TP + TQ;
Chris@82 263 TI = Ti + Tr;
Chris@82 264 TR = TP - TQ;
Chris@82 265 }
Chris@82 266 {
Chris@82 267 E Tx, TS, TE, TT;
Chris@82 268 {
Chris@82 269 E Tt, Tv, Ty, TC;
Chris@82 270 Tt = W[6];
Chris@82 271 Tv = W[7];
Chris@82 272 Tx = FNMS(Tv, Tw, Tt * Tu);
Chris@82 273 TS = FMA(Tv, Tu, Tt * Tw);
Chris@82 274 Ty = W[0];
Chris@82 275 TC = W[1];
Chris@82 276 TE = FNMS(TC, TD, Ty * TB);
Chris@82 277 TT = FMA(TC, TB, Ty * TD);
Chris@82 278 }
Chris@82 279 TF = Tx + TE;
Chris@82 280 T11 = TS + TT;
Chris@82 281 TH = TE - Tx;
Chris@82 282 TU = TS - TT;
Chris@82 283 }
Chris@82 284 }
Chris@82 285 {
Chris@82 286 E T12, Td, TG, TZ;
Chris@82 287 T12 = KP433012701 * (T10 - T11);
Chris@82 288 Td = T3 - Tc;
Chris@82 289 TG = Ts + TF;
Chris@82 290 TZ = FNMS(KP250000000, TG, KP500000000 * Td);
Chris@82 291 Ip[0] = KP500000000 * (Td + TG);
Chris@82 292 Im[WS(rs, 1)] = T12 - TZ;
Chris@82 293 Ip[WS(rs, 2)] = TZ + T12;
Chris@82 294 }
Chris@82 295 {
Chris@82 296 E T16, T13, T14, T15;
Chris@82 297 T16 = KP433012701 * (Ts - TF);
Chris@82 298 T13 = TM + TN;
Chris@82 299 T14 = T10 + T11;
Chris@82 300 T15 = FNMS(KP250000000, T14, KP500000000 * T13);
Chris@82 301 Rp[WS(rs, 2)] = T15 - T16;
Chris@82 302 Rp[0] = KP500000000 * (T13 + T14);
Chris@82 303 Rm[WS(rs, 1)] = T16 + T15;
Chris@82 304 }
Chris@82 305 {
Chris@82 306 E TY, TJ, TK, TX;
Chris@82 307 TY = KP433012701 * (TU - TR);
Chris@82 308 TJ = TH - TI;
Chris@82 309 TK = Tc + T3;
Chris@82 310 TX = FMA(KP500000000, TK, KP250000000 * TJ);
Chris@82 311 Im[WS(rs, 2)] = KP500000000 * (TJ - TK);
Chris@82 312 Im[0] = TY - TX;
Chris@82 313 Ip[WS(rs, 1)] = TX + TY;
Chris@82 314 }
Chris@82 315 {
Chris@82 316 E TL, TO, TV, TW;
Chris@82 317 TL = KP433012701 * (TI + TH);
Chris@82 318 TO = TM - TN;
Chris@82 319 TV = TR + TU;
Chris@82 320 TW = FNMS(KP250000000, TV, KP500000000 * TO);
Chris@82 321 Rp[WS(rs, 1)] = TL + TW;
Chris@82 322 Rm[WS(rs, 2)] = KP500000000 * (TO + TV);
Chris@82 323 Rm[0] = TW - TL;
Chris@82 324 }
Chris@82 325 }
Chris@82 326 }
Chris@82 327 }
Chris@82 328
Chris@82 329 static const tw_instr twinstr[] = {
Chris@82 330 {TW_FULL, 1, 6},
Chris@82 331 {TW_NEXT, 1, 0}
Chris@82 332 };
Chris@82 333
Chris@82 334 static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, {44, 22, 14, 0} };
Chris@82 335
Chris@82 336 void X(codelet_hc2cfdft_6) (planner *p) {
Chris@82 337 X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
Chris@82 338 }
Chris@82 339 #endif