annotate src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_12.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:28 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 38 FP additions, 16 FP multiplications,
Chris@82 32 * (or, 22 additions, 0 multiplications, 16 fused multiply/add),
Chris@82 33 * 25 stack variables, 2 constants, and 24 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/r2cb.h"
Chris@82 36
Chris@82 37 static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@82 40 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@82 41 {
Chris@82 42 INT i;
Chris@82 43 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@82 44 E T8, Tb, Tk, Tz, Tu, Tv, Tn, Ty, T3, Tp, Tf, T6, Tq, Ti;
Chris@82 45 {
Chris@82 46 E T9, Ta, Tl, Tm;
Chris@82 47 T8 = Cr[WS(csr, 3)];
Chris@82 48 T9 = Cr[WS(csr, 5)];
Chris@82 49 Ta = Cr[WS(csr, 1)];
Chris@82 50 Tb = T9 + Ta;
Chris@82 51 Tk = FNMS(KP2_000000000, T8, Tb);
Chris@82 52 Tz = T9 - Ta;
Chris@82 53 Tu = Ci[WS(csi, 3)];
Chris@82 54 Tl = Ci[WS(csi, 5)];
Chris@82 55 Tm = Ci[WS(csi, 1)];
Chris@82 56 Tv = Tl + Tm;
Chris@82 57 Tn = Tl - Tm;
Chris@82 58 Ty = FMA(KP2_000000000, Tu, Tv);
Chris@82 59 }
Chris@82 60 {
Chris@82 61 E Te, T1, T2, Td;
Chris@82 62 Te = Ci[WS(csi, 4)];
Chris@82 63 T1 = Cr[0];
Chris@82 64 T2 = Cr[WS(csr, 4)];
Chris@82 65 Td = T1 - T2;
Chris@82 66 T3 = FMA(KP2_000000000, T2, T1);
Chris@82 67 Tp = FNMS(KP1_732050807, Te, Td);
Chris@82 68 Tf = FMA(KP1_732050807, Te, Td);
Chris@82 69 }
Chris@82 70 {
Chris@82 71 E Th, T4, T5, Tg;
Chris@82 72 Th = Ci[WS(csi, 2)];
Chris@82 73 T4 = Cr[WS(csr, 6)];
Chris@82 74 T5 = Cr[WS(csr, 2)];
Chris@82 75 Tg = T4 - T5;
Chris@82 76 T6 = FMA(KP2_000000000, T5, T4);
Chris@82 77 Tq = FMA(KP1_732050807, Th, Tg);
Chris@82 78 Ti = FNMS(KP1_732050807, Th, Tg);
Chris@82 79 }
Chris@82 80 {
Chris@82 81 E T7, Tc, Tx, TA;
Chris@82 82 T7 = T3 + T6;
Chris@82 83 Tc = T8 + Tb;
Chris@82 84 R0[WS(rs, 3)] = FNMS(KP2_000000000, Tc, T7);
Chris@82 85 R0[0] = FMA(KP2_000000000, Tc, T7);
Chris@82 86 {
Chris@82 87 E Tj, To, TB, TC;
Chris@82 88 Tj = Tf + Ti;
Chris@82 89 To = FMA(KP1_732050807, Tn, Tk);
Chris@82 90 R0[WS(rs, 1)] = Tj + To;
Chris@82 91 R0[WS(rs, 4)] = Tj - To;
Chris@82 92 TB = Tf - Ti;
Chris@82 93 TC = FNMS(KP1_732050807, Tz, Ty);
Chris@82 94 R1[WS(rs, 2)] = TB - TC;
Chris@82 95 R1[WS(rs, 5)] = TB + TC;
Chris@82 96 }
Chris@82 97 Tx = Tp - Tq;
Chris@82 98 TA = FMA(KP1_732050807, Tz, Ty);
Chris@82 99 R1[0] = Tx - TA;
Chris@82 100 R1[WS(rs, 3)] = Tx + TA;
Chris@82 101 {
Chris@82 102 E Tt, Tw, Tr, Ts;
Chris@82 103 Tt = T3 - T6;
Chris@82 104 Tw = Tu - Tv;
Chris@82 105 R1[WS(rs, 4)] = FNMS(KP2_000000000, Tw, Tt);
Chris@82 106 R1[WS(rs, 1)] = FMA(KP2_000000000, Tw, Tt);
Chris@82 107 Tr = Tp + Tq;
Chris@82 108 Ts = FNMS(KP1_732050807, Tn, Tk);
Chris@82 109 R0[WS(rs, 5)] = Tr + Ts;
Chris@82 110 R0[WS(rs, 2)] = Tr - Ts;
Chris@82 111 }
Chris@82 112 }
Chris@82 113 }
Chris@82 114 }
Chris@82 115 }
Chris@82 116
Chris@82 117 static const kr2c_desc desc = { 12, "r2cb_12", {22, 0, 16, 0}, &GENUS };
Chris@82 118
Chris@82 119 void X(codelet_r2cb_12) (planner *p) {
Chris@82 120 X(kr2c_register) (p, r2cb_12, &desc);
Chris@82 121 }
Chris@82 122
Chris@82 123 #else
Chris@82 124
Chris@82 125 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */
Chris@82 126
Chris@82 127 /*
Chris@82 128 * This function contains 38 FP additions, 10 FP multiplications,
Chris@82 129 * (or, 34 additions, 6 multiplications, 4 fused multiply/add),
Chris@82 130 * 25 stack variables, 2 constants, and 24 memory accesses
Chris@82 131 */
Chris@82 132 #include "rdft/scalar/r2cb.h"
Chris@82 133
Chris@82 134 static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 135 {
Chris@82 136 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
Chris@82 137 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@82 138 {
Chris@82 139 INT i;
Chris@82 140 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
Chris@82 141 E T8, Tb, Tm, TA, Tw, Tx, Tp, TB, T3, Tr, Tg, T6, Ts, Tk;
Chris@82 142 {
Chris@82 143 E T9, Ta, Tn, To;
Chris@82 144 T8 = Cr[WS(csr, 3)];
Chris@82 145 T9 = Cr[WS(csr, 5)];
Chris@82 146 Ta = Cr[WS(csr, 1)];
Chris@82 147 Tb = T9 + Ta;
Chris@82 148 Tm = FMS(KP2_000000000, T8, Tb);
Chris@82 149 TA = KP1_732050807 * (T9 - Ta);
Chris@82 150 Tw = Ci[WS(csi, 3)];
Chris@82 151 Tn = Ci[WS(csi, 5)];
Chris@82 152 To = Ci[WS(csi, 1)];
Chris@82 153 Tx = Tn + To;
Chris@82 154 Tp = KP1_732050807 * (Tn - To);
Chris@82 155 TB = FMA(KP2_000000000, Tw, Tx);
Chris@82 156 }
Chris@82 157 {
Chris@82 158 E Tf, T1, T2, Td, Te;
Chris@82 159 Te = Ci[WS(csi, 4)];
Chris@82 160 Tf = KP1_732050807 * Te;
Chris@82 161 T1 = Cr[0];
Chris@82 162 T2 = Cr[WS(csr, 4)];
Chris@82 163 Td = T1 - T2;
Chris@82 164 T3 = FMA(KP2_000000000, T2, T1);
Chris@82 165 Tr = Td - Tf;
Chris@82 166 Tg = Td + Tf;
Chris@82 167 }
Chris@82 168 {
Chris@82 169 E Tj, T4, T5, Th, Ti;
Chris@82 170 Ti = Ci[WS(csi, 2)];
Chris@82 171 Tj = KP1_732050807 * Ti;
Chris@82 172 T4 = Cr[WS(csr, 6)];
Chris@82 173 T5 = Cr[WS(csr, 2)];
Chris@82 174 Th = T4 - T5;
Chris@82 175 T6 = FMA(KP2_000000000, T5, T4);
Chris@82 176 Ts = Th + Tj;
Chris@82 177 Tk = Th - Tj;
Chris@82 178 }
Chris@82 179 {
Chris@82 180 E T7, Tc, Tz, TC;
Chris@82 181 T7 = T3 + T6;
Chris@82 182 Tc = KP2_000000000 * (T8 + Tb);
Chris@82 183 R0[WS(rs, 3)] = T7 - Tc;
Chris@82 184 R0[0] = T7 + Tc;
Chris@82 185 {
Chris@82 186 E Tl, Tq, TD, TE;
Chris@82 187 Tl = Tg + Tk;
Chris@82 188 Tq = Tm - Tp;
Chris@82 189 R0[WS(rs, 1)] = Tl - Tq;
Chris@82 190 R0[WS(rs, 4)] = Tl + Tq;
Chris@82 191 TD = Tg - Tk;
Chris@82 192 TE = TB - TA;
Chris@82 193 R1[WS(rs, 2)] = TD - TE;
Chris@82 194 R1[WS(rs, 5)] = TD + TE;
Chris@82 195 }
Chris@82 196 Tz = Tr - Ts;
Chris@82 197 TC = TA + TB;
Chris@82 198 R1[0] = Tz - TC;
Chris@82 199 R1[WS(rs, 3)] = Tz + TC;
Chris@82 200 {
Chris@82 201 E Tv, Ty, Tt, Tu;
Chris@82 202 Tv = T3 - T6;
Chris@82 203 Ty = KP2_000000000 * (Tw - Tx);
Chris@82 204 R1[WS(rs, 4)] = Tv - Ty;
Chris@82 205 R1[WS(rs, 1)] = Tv + Ty;
Chris@82 206 Tt = Tr + Ts;
Chris@82 207 Tu = Tm + Tp;
Chris@82 208 R0[WS(rs, 5)] = Tt - Tu;
Chris@82 209 R0[WS(rs, 2)] = Tt + Tu;
Chris@82 210 }
Chris@82 211 }
Chris@82 212 }
Chris@82 213 }
Chris@82 214 }
Chris@82 215
Chris@82 216 static const kr2c_desc desc = { 12, "r2cb_12", {34, 6, 4, 0}, &GENUS };
Chris@82 217
Chris@82 218 void X(codelet_r2cb_12) (planner *p) {
Chris@82 219 X(kr2c_register) (p, r2cb_12, &desc);
Chris@82 220 }
Chris@82 221
Chris@82 222 #endif