annotate src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_11.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:28 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 60 FP additions, 56 FP multiplications,
Chris@82 32 * (or, 4 additions, 0 multiplications, 56 fused multiply/add),
Chris@82 33 * 44 stack variables, 11 constants, and 22 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/r2cb.h"
Chris@82 36
Chris@82 37 static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
Chris@82 40 DK(KP918985947, +0.918985947228994779780736114132655398124909697);
Chris@82 41 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
Chris@82 42 DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
Chris@82 43 DK(KP876768831, +0.876768831002589333891339807079336796764054852);
Chris@82 44 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@82 45 DK(KP778434453, +0.778434453334651800608337670740821884709317477);
Chris@82 46 DK(KP634356270, +0.634356270682424498893150776899916060542806975);
Chris@82 47 DK(KP342584725, +0.342584725681637509502641509861112333758894680);
Chris@82 48 DK(KP715370323, +0.715370323453429719112414662767260662417897278);
Chris@82 49 DK(KP521108558, +0.521108558113202722944698153526659300680427422);
Chris@82 50 {
Chris@82 51 INT i;
Chris@82 52 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
Chris@82 53 E T1, Td, Th, Te, Tf, Tg, Tj, TT, Ts, TB, TK, T2, T6, T3, T4;
Chris@82 54 E T5, Ta, To, TP, TG, Tx, T7;
Chris@82 55 T1 = Cr[0];
Chris@82 56 {
Chris@82 57 E Ti, TS, Tr, TA, TJ;
Chris@82 58 Td = Ci[WS(csi, 3)];
Chris@82 59 Th = Ci[WS(csi, 5)];
Chris@82 60 Te = Ci[WS(csi, 2)];
Chris@82 61 Tf = Ci[WS(csi, 4)];
Chris@82 62 Tg = Ci[WS(csi, 1)];
Chris@82 63 Ti = FMA(KP521108558, Th, Tg);
Chris@82 64 TS = FMS(KP521108558, Tg, Te);
Chris@82 65 Tr = FMA(KP521108558, Td, Th);
Chris@82 66 TA = FNMS(KP521108558, Te, Tf);
Chris@82 67 TJ = FMA(KP521108558, Tf, Td);
Chris@82 68 Tj = FMA(KP715370323, Ti, Tf);
Chris@82 69 TT = FMA(KP715370323, TS, Td);
Chris@82 70 Ts = FNMS(KP715370323, Tr, Te);
Chris@82 71 TB = FMA(KP715370323, TA, Th);
Chris@82 72 TK = FMA(KP715370323, TJ, Tg);
Chris@82 73 }
Chris@82 74 {
Chris@82 75 E T8, TN, Tm, Tv, TE;
Chris@82 76 T2 = Cr[WS(csr, 1)];
Chris@82 77 T6 = Cr[WS(csr, 5)];
Chris@82 78 T3 = Cr[WS(csr, 2)];
Chris@82 79 T4 = Cr[WS(csr, 3)];
Chris@82 80 T5 = Cr[WS(csr, 4)];
Chris@82 81 T8 = FNMS(KP342584725, T4, T3);
Chris@82 82 TN = FNMS(KP342584725, T6, T5);
Chris@82 83 Tm = FNMS(KP342584725, T5, T2);
Chris@82 84 Tv = FNMS(KP342584725, T2, T4);
Chris@82 85 TE = FNMS(KP342584725, T3, T6);
Chris@82 86 {
Chris@82 87 E T9, Tn, TO, TF, Tw;
Chris@82 88 T9 = FNMS(KP634356270, T8, T5);
Chris@82 89 Ta = FNMS(KP778434453, T9, T2);
Chris@82 90 Tn = FNMS(KP634356270, Tm, T3);
Chris@82 91 To = FNMS(KP778434453, Tn, T6);
Chris@82 92 TO = FNMS(KP634356270, TN, T4);
Chris@82 93 TP = FNMS(KP778434453, TO, T3);
Chris@82 94 TF = FNMS(KP634356270, TE, T2);
Chris@82 95 TG = FNMS(KP778434453, TF, T4);
Chris@82 96 Tw = FNMS(KP634356270, Tv, T6);
Chris@82 97 Tx = FNMS(KP778434453, Tw, T5);
Chris@82 98 T7 = T2 + T3 + T4 + T5 + T6;
Chris@82 99 }
Chris@82 100 }
Chris@82 101 R0[0] = FMA(KP2_000000000, T7, T1);
Chris@82 102 {
Chris@82 103 E Tc, Tl, Tb, Tk;
Chris@82 104 Tb = FNMS(KP876768831, Ta, T6);
Chris@82 105 Tc = FNMS(KP1_918985947, Tb, T1);
Chris@82 106 Tk = FMA(KP830830026, Tj, Te);
Chris@82 107 Tl = FMA(KP918985947, Tk, Td);
Chris@82 108 R1[0] = FNMS(KP1_979642883, Tl, Tc);
Chris@82 109 R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc);
Chris@82 110 }
Chris@82 111 {
Chris@82 112 E TR, TV, TQ, TU;
Chris@82 113 TQ = FNMS(KP876768831, TP, T2);
Chris@82 114 TR = FNMS(KP1_918985947, TQ, T1);
Chris@82 115 TU = FNMS(KP830830026, TT, Tf);
Chris@82 116 TV = FNMS(KP918985947, TU, Th);
Chris@82 117 R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR);
Chris@82 118 R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR);
Chris@82 119 }
Chris@82 120 {
Chris@82 121 E TI, TM, TH, TL;
Chris@82 122 TH = FNMS(KP876768831, TG, T5);
Chris@82 123 TI = FNMS(KP1_918985947, TH, T1);
Chris@82 124 TL = FNMS(KP830830026, TK, Th);
Chris@82 125 TM = FMA(KP918985947, TL, Te);
Chris@82 126 R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI);
Chris@82 127 R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI);
Chris@82 128 }
Chris@82 129 {
Chris@82 130 E Tz, TD, Ty, TC;
Chris@82 131 Ty = FNMS(KP876768831, Tx, T3);
Chris@82 132 Tz = FNMS(KP1_918985947, Ty, T1);
Chris@82 133 TC = FNMS(KP830830026, TB, Td);
Chris@82 134 TD = FNMS(KP918985947, TC, Tg);
Chris@82 135 R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz);
Chris@82 136 R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz);
Chris@82 137 }
Chris@82 138 {
Chris@82 139 E Tq, Tu, Tp, Tt;
Chris@82 140 Tp = FNMS(KP876768831, To, T4);
Chris@82 141 Tq = FNMS(KP1_918985947, Tp, T1);
Chris@82 142 Tt = FMA(KP830830026, Ts, Tg);
Chris@82 143 Tu = FNMS(KP918985947, Tt, Tf);
Chris@82 144 R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq);
Chris@82 145 R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq);
Chris@82 146 }
Chris@82 147 }
Chris@82 148 }
Chris@82 149 }
Chris@82 150
Chris@82 151 static const kr2c_desc desc = { 11, "r2cb_11", {4, 0, 56, 0}, &GENUS };
Chris@82 152
Chris@82 153 void X(codelet_r2cb_11) (planner *p) {
Chris@82 154 X(kr2c_register) (p, r2cb_11, &desc);
Chris@82 155 }
Chris@82 156
Chris@82 157 #else
Chris@82 158
Chris@82 159 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include rdft/scalar/r2cb.h */
Chris@82 160
Chris@82 161 /*
Chris@82 162 * This function contains 60 FP additions, 51 FP multiplications,
Chris@82 163 * (or, 19 additions, 10 multiplications, 41 fused multiply/add),
Chris@82 164 * 33 stack variables, 11 constants, and 22 memory accesses
Chris@82 165 */
Chris@82 166 #include "rdft/scalar/r2cb.h"
Chris@82 167
Chris@82 168 static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
Chris@82 169 {
Chris@82 170 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
Chris@82 171 DK(KP1_918985947, +1.918985947228994779780736114132655398124909697);
Chris@82 172 DK(KP1_309721467, +1.309721467890570128113850144932587106367582399);
Chris@82 173 DK(KP284629676, +0.284629676546570280887585337232739337582102722);
Chris@82 174 DK(KP830830026, +0.830830026003772851058548298459246407048009821);
Chris@82 175 DK(KP1_682507065, +1.682507065662362337723623297838735435026584997);
Chris@82 176 DK(KP563465113, +0.563465113682859395422835830693233798071555798);
Chris@82 177 DK(KP1_511499148, +1.511499148708516567548071687944688840359434890);
Chris@82 178 DK(KP1_979642883, +1.979642883761865464752184075553437574753038744);
Chris@82 179 DK(KP1_819263990, +1.819263990709036742823430766158056920120482102);
Chris@82 180 DK(KP1_081281634, +1.081281634911195164215271908637383390863541216);
Chris@82 181 {
Chris@82 182 INT i;
Chris@82 183 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) {
Chris@82 184 E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg;
Chris@82 185 E Ti;
Chris@82 186 {
Chris@82 187 E T8, Tc, T9, Ta, Tb;
Chris@82 188 T8 = Ci[WS(csi, 2)];
Chris@82 189 Tc = Ci[WS(csi, 1)];
Chris@82 190 T9 = Ci[WS(csi, 4)];
Chris@82 191 Ta = Ci[WS(csi, 5)];
Chris@82 192 Tb = Ci[WS(csi, 3)];
Chris@82 193 Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc);
Chris@82 194 Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc);
Chris@82 195 Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc);
Chris@82 196 Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta);
Chris@82 197 Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc);
Chris@82 198 }
Chris@82 199 T1 = Cr[0];
Chris@82 200 T2 = Cr[WS(csr, 1)];
Chris@82 201 T6 = Cr[WS(csr, 5)];
Chris@82 202 T5 = Cr[WS(csr, 4)];
Chris@82 203 T4 = Cr[WS(csr, 3)];
Chris@82 204 T3 = Cr[WS(csr, 2)];
Chris@82 205 T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2);
Chris@82 206 Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2);
Chris@82 207 Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2);
Chris@82 208 Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4);
Chris@82 209 Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3);
Chris@82 210 R0[WS(rs, 3)] = T7 - Td;
Chris@82 211 R0[WS(rs, 4)] = Te - Tf;
Chris@82 212 R0[WS(rs, 2)] = Tk + Tl;
Chris@82 213 R1[WS(rs, 2)] = T7 + Td;
Chris@82 214 R1[WS(rs, 3)] = Tk - Tl;
Chris@82 215 R0[WS(rs, 1)] = Ti + Tj;
Chris@82 216 R1[WS(rs, 1)] = Te + Tf;
Chris@82 217 R0[WS(rs, 5)] = Tg + Th;
Chris@82 218 R1[0] = Tg - Th;
Chris@82 219 R1[WS(rs, 4)] = Ti - Tj;
Chris@82 220 R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1);
Chris@82 221 }
Chris@82 222 }
Chris@82 223 }
Chris@82 224
Chris@82 225 static const kr2c_desc desc = { 11, "r2cb_11", {19, 10, 41, 0}, &GENUS };
Chris@82 226
Chris@82 227 void X(codelet_r2cb_11) (planner *p) {
Chris@82 228 X(kr2c_register) (p, r2cb_11, &desc);
Chris@82 229 }
Chris@82 230
Chris@82 231 #endif