annotate src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_6.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:57 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 58 FP additions, 32 FP multiplications,
Chris@82 32 * (or, 36 additions, 10 multiplications, 22 fused multiply/add),
Chris@82 33 * 34 stack variables, 2 constants, and 24 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/hc2cb.h"
Chris@82 36
Chris@82 37 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 41 {
Chris@82 42 INT m;
Chris@82 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 44 E Tp, TD, Tj, TV, Tq, Tr, TG, TP, T4, Ts, TQ, Tb, Tc, TA, TU;
Chris@82 45 {
Chris@82 46 E Tf, TF, Ti, TE, Td, Te;
Chris@82 47 Td = Ip[WS(rs, 1)];
Chris@82 48 Te = Im[WS(rs, 1)];
Chris@82 49 Tf = Td - Te;
Chris@82 50 TF = Te + Td;
Chris@82 51 {
Chris@82 52 E Tn, To, Tg, Th;
Chris@82 53 Tn = Ip[0];
Chris@82 54 To = Im[WS(rs, 2)];
Chris@82 55 Tp = Tn - To;
Chris@82 56 TD = Tn + To;
Chris@82 57 Tg = Ip[WS(rs, 2)];
Chris@82 58 Th = Im[0];
Chris@82 59 Ti = Tg - Th;
Chris@82 60 TE = Tg + Th;
Chris@82 61 }
Chris@82 62 Tj = Tf - Ti;
Chris@82 63 TV = TF + TE;
Chris@82 64 Tq = Tf + Ti;
Chris@82 65 Tr = FNMS(KP500000000, Tq, Tp);
Chris@82 66 TG = TE - TF;
Chris@82 67 TP = FNMS(KP500000000, TG, TD);
Chris@82 68 }
Chris@82 69 {
Chris@82 70 E Tw, Ta, Ty, T7, Tx, T2, T3, Tz;
Chris@82 71 T2 = Rp[0];
Chris@82 72 T3 = Rm[WS(rs, 2)];
Chris@82 73 T4 = T2 + T3;
Chris@82 74 Tw = T2 - T3;
Chris@82 75 {
Chris@82 76 E T8, T9, T5, T6;
Chris@82 77 T8 = Rm[WS(rs, 1)];
Chris@82 78 T9 = Rp[WS(rs, 1)];
Chris@82 79 Ta = T8 + T9;
Chris@82 80 Ty = T8 - T9;
Chris@82 81 T5 = Rp[WS(rs, 2)];
Chris@82 82 T6 = Rm[0];
Chris@82 83 T7 = T5 + T6;
Chris@82 84 Tx = T5 - T6;
Chris@82 85 }
Chris@82 86 Ts = T7 - Ta;
Chris@82 87 TQ = Tx - Ty;
Chris@82 88 Tb = T7 + Ta;
Chris@82 89 Tc = FNMS(KP500000000, Tb, T4);
Chris@82 90 Tz = Tx + Ty;
Chris@82 91 TA = Tw + Tz;
Chris@82 92 TU = FNMS(KP500000000, Tz, Tw);
Chris@82 93 }
Chris@82 94 {
Chris@82 95 E TN, TY, TR, TW, TS, TZ, TO, TX, T10, TT;
Chris@82 96 TN = T4 + Tb;
Chris@82 97 TY = Tp + Tq;
Chris@82 98 TR = FMA(KP866025403, TQ, TP);
Chris@82 99 TW = FNMS(KP866025403, TV, TU);
Chris@82 100 TO = W[0];
Chris@82 101 TS = TO * TR;
Chris@82 102 TZ = TO * TW;
Chris@82 103 TT = W[1];
Chris@82 104 TX = FMA(TT, TW, TS);
Chris@82 105 T10 = FNMS(TT, TR, TZ);
Chris@82 106 Rp[0] = TN - TX;
Chris@82 107 Ip[0] = TY + T10;
Chris@82 108 Rm[0] = TN + TX;
Chris@82 109 Im[0] = T10 - TY;
Chris@82 110 }
Chris@82 111 {
Chris@82 112 E Tt, TH, Tv, TB, TC, TL, T1, Tl, Tm, TJ, Tk;
Chris@82 113 Tt = FNMS(KP866025403, Ts, Tr);
Chris@82 114 TH = TD + TG;
Chris@82 115 Tv = W[4];
Chris@82 116 TB = Tv * TA;
Chris@82 117 TC = W[5];
Chris@82 118 TL = TC * TA;
Chris@82 119 Tk = FNMS(KP866025403, Tj, Tc);
Chris@82 120 T1 = W[3];
Chris@82 121 Tl = T1 * Tk;
Chris@82 122 Tm = W[2];
Chris@82 123 TJ = Tm * Tk;
Chris@82 124 {
Chris@82 125 E Tu, TI, TK, TM;
Chris@82 126 Tu = FMA(Tm, Tt, Tl);
Chris@82 127 TI = FNMS(TC, TH, TB);
Chris@82 128 Ip[WS(rs, 1)] = Tu + TI;
Chris@82 129 Im[WS(rs, 1)] = TI - Tu;
Chris@82 130 TK = FNMS(T1, Tt, TJ);
Chris@82 131 TM = FMA(Tv, TH, TL);
Chris@82 132 Rp[WS(rs, 1)] = TK - TM;
Chris@82 133 Rm[WS(rs, 1)] = TK + TM;
Chris@82 134 }
Chris@82 135 }
Chris@82 136 {
Chris@82 137 E T15, T11, T13, T14, T1d, T18, T1b, T19, T1f, T12, T17;
Chris@82 138 T15 = FMA(KP866025403, Ts, Tr);
Chris@82 139 T12 = FMA(KP866025403, Tj, Tc);
Chris@82 140 T11 = W[6];
Chris@82 141 T13 = T11 * T12;
Chris@82 142 T14 = W[7];
Chris@82 143 T1d = T14 * T12;
Chris@82 144 T18 = FNMS(KP866025403, TQ, TP);
Chris@82 145 T1b = FMA(KP866025403, TV, TU);
Chris@82 146 T17 = W[8];
Chris@82 147 T19 = T17 * T18;
Chris@82 148 T1f = T17 * T1b;
Chris@82 149 {
Chris@82 150 E T16, T1e, T1c, T1g, T1a;
Chris@82 151 T16 = FNMS(T14, T15, T13);
Chris@82 152 T1e = FMA(T11, T15, T1d);
Chris@82 153 T1a = W[9];
Chris@82 154 T1c = FMA(T1a, T1b, T19);
Chris@82 155 T1g = FNMS(T1a, T18, T1f);
Chris@82 156 Rp[WS(rs, 2)] = T16 - T1c;
Chris@82 157 Ip[WS(rs, 2)] = T1e + T1g;
Chris@82 158 Rm[WS(rs, 2)] = T16 + T1c;
Chris@82 159 Im[WS(rs, 2)] = T1g - T1e;
Chris@82 160 }
Chris@82 161 }
Chris@82 162 }
Chris@82 163 }
Chris@82 164 }
Chris@82 165
Chris@82 166 static const tw_instr twinstr[] = {
Chris@82 167 {TW_FULL, 1, 6},
Chris@82 168 {TW_NEXT, 1, 0}
Chris@82 169 };
Chris@82 170
Chris@82 171 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {36, 10, 22, 0} };
Chris@82 172
Chris@82 173 void X(codelet_hc2cbdft_6) (planner *p) {
Chris@82 174 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
Chris@82 175 }
Chris@82 176 #else
Chris@82 177
Chris@82 178 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */
Chris@82 179
Chris@82 180 /*
Chris@82 181 * This function contains 58 FP additions, 28 FP multiplications,
Chris@82 182 * (or, 44 additions, 14 multiplications, 14 fused multiply/add),
Chris@82 183 * 29 stack variables, 2 constants, and 24 memory accesses
Chris@82 184 */
Chris@82 185 #include "rdft/scalar/hc2cb.h"
Chris@82 186
Chris@82 187 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 188 {
Chris@82 189 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 190 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 191 {
Chris@82 192 INT m;
Chris@82 193 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@82 194 E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE;
Chris@82 195 E TM;
Chris@82 196 {
Chris@82 197 E Ta, Tx, T7, Tw, T2, T3;
Chris@82 198 T2 = Rp[0];
Chris@82 199 T3 = Rm[WS(rs, 2)];
Chris@82 200 T4 = T2 + T3;
Chris@82 201 Tv = T2 - T3;
Chris@82 202 {
Chris@82 203 E T8, T9, T5, T6;
Chris@82 204 T8 = Rm[WS(rs, 1)];
Chris@82 205 T9 = Rp[WS(rs, 1)];
Chris@82 206 Ta = T8 + T9;
Chris@82 207 Tx = T8 - T9;
Chris@82 208 T5 = Rp[WS(rs, 2)];
Chris@82 209 T6 = Rm[0];
Chris@82 210 T7 = T5 + T6;
Chris@82 211 Tw = T5 - T6;
Chris@82 212 }
Chris@82 213 Tr = KP866025403 * (T7 - Ta);
Chris@82 214 TL = KP866025403 * (Tw - Tx);
Chris@82 215 Tb = T7 + Ta;
Chris@82 216 Tc = FNMS(KP500000000, Tb, T4);
Chris@82 217 Ty = Tw + Tx;
Chris@82 218 TP = FNMS(KP500000000, Ty, Tv);
Chris@82 219 }
Chris@82 220 {
Chris@82 221 E Tf, TC, Ti, TD, Td, Te;
Chris@82 222 Td = Ip[WS(rs, 1)];
Chris@82 223 Te = Im[WS(rs, 1)];
Chris@82 224 Tf = Td - Te;
Chris@82 225 TC = Te + Td;
Chris@82 226 {
Chris@82 227 E Tm, Tn, Tg, Th;
Chris@82 228 Tm = Ip[0];
Chris@82 229 Tn = Im[WS(rs, 2)];
Chris@82 230 To = Tm - Tn;
Chris@82 231 TB = Tm + Tn;
Chris@82 232 Tg = Ip[WS(rs, 2)];
Chris@82 233 Th = Im[0];
Chris@82 234 Ti = Tg - Th;
Chris@82 235 TD = Tg + Th;
Chris@82 236 }
Chris@82 237 Tj = KP866025403 * (Tf - Ti);
Chris@82 238 TQ = KP866025403 * (TC + TD);
Chris@82 239 Tp = Tf + Ti;
Chris@82 240 Tq = FNMS(KP500000000, Tp, To);
Chris@82 241 TE = TC - TD;
Chris@82 242 TM = FMA(KP500000000, TE, TB);
Chris@82 243 }
Chris@82 244 {
Chris@82 245 E TJ, TT, TS, TU;
Chris@82 246 TJ = T4 + Tb;
Chris@82 247 TT = To + Tp;
Chris@82 248 {
Chris@82 249 E TN, TR, TK, TO;
Chris@82 250 TN = TL + TM;
Chris@82 251 TR = TP - TQ;
Chris@82 252 TK = W[0];
Chris@82 253 TO = W[1];
Chris@82 254 TS = FMA(TK, TN, TO * TR);
Chris@82 255 TU = FNMS(TO, TN, TK * TR);
Chris@82 256 }
Chris@82 257 Rp[0] = TJ - TS;
Chris@82 258 Ip[0] = TT + TU;
Chris@82 259 Rm[0] = TJ + TS;
Chris@82 260 Im[0] = TU - TT;
Chris@82 261 }
Chris@82 262 {
Chris@82 263 E TZ, T15, T14, T16;
Chris@82 264 {
Chris@82 265 E TW, TY, TV, TX;
Chris@82 266 TW = Tc + Tj;
Chris@82 267 TY = Tr + Tq;
Chris@82 268 TV = W[6];
Chris@82 269 TX = W[7];
Chris@82 270 TZ = FNMS(TX, TY, TV * TW);
Chris@82 271 T15 = FMA(TX, TW, TV * TY);
Chris@82 272 }
Chris@82 273 {
Chris@82 274 E T11, T13, T10, T12;
Chris@82 275 T11 = TM - TL;
Chris@82 276 T13 = TP + TQ;
Chris@82 277 T10 = W[8];
Chris@82 278 T12 = W[9];
Chris@82 279 T14 = FMA(T10, T11, T12 * T13);
Chris@82 280 T16 = FNMS(T12, T11, T10 * T13);
Chris@82 281 }
Chris@82 282 Rp[WS(rs, 2)] = TZ - T14;
Chris@82 283 Ip[WS(rs, 2)] = T15 + T16;
Chris@82 284 Rm[WS(rs, 2)] = TZ + T14;
Chris@82 285 Im[WS(rs, 2)] = T16 - T15;
Chris@82 286 }
Chris@82 287 {
Chris@82 288 E Tt, TH, TG, TI;
Chris@82 289 {
Chris@82 290 E Tk, Ts, T1, Tl;
Chris@82 291 Tk = Tc - Tj;
Chris@82 292 Ts = Tq - Tr;
Chris@82 293 T1 = W[3];
Chris@82 294 Tl = W[2];
Chris@82 295 Tt = FMA(T1, Tk, Tl * Ts);
Chris@82 296 TH = FNMS(T1, Ts, Tl * Tk);
Chris@82 297 }
Chris@82 298 {
Chris@82 299 E Tz, TF, Tu, TA;
Chris@82 300 Tz = Tv + Ty;
Chris@82 301 TF = TB - TE;
Chris@82 302 Tu = W[4];
Chris@82 303 TA = W[5];
Chris@82 304 TG = FNMS(TA, TF, Tu * Tz);
Chris@82 305 TI = FMA(TA, Tz, Tu * TF);
Chris@82 306 }
Chris@82 307 Ip[WS(rs, 1)] = Tt + TG;
Chris@82 308 Rp[WS(rs, 1)] = TH - TI;
Chris@82 309 Im[WS(rs, 1)] = TG - Tt;
Chris@82 310 Rm[WS(rs, 1)] = TH + TI;
Chris@82 311 }
Chris@82 312 }
Chris@82 313 }
Chris@82 314 }
Chris@82 315
Chris@82 316 static const tw_instr twinstr[] = {
Chris@82 317 {TW_FULL, 1, 6},
Chris@82 318 {TW_NEXT, 1, 0}
Chris@82 319 };
Chris@82 320
Chris@82 321 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {44, 14, 14, 0} };
Chris@82 322
Chris@82 323 void X(codelet_hc2cbdft_6) (planner *p) {
Chris@82 324 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
Chris@82 325 }
Chris@82 326 #endif