annotate src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_10.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:58 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 122 FP additions, 72 FP multiplications,
Chris@82 32 * (or, 68 additions, 18 multiplications, 54 fused multiply/add),
Chris@82 33 * 91 stack variables, 4 constants, and 40 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/hc2cb.h"
Chris@82 36
Chris@82 37 static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 41 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@82 42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 43 {
Chris@82 44 INT m;
Chris@82 45 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@82 46 E T3, Tl, Tu, T14, Ti, T13, Ts, Tt, T1p, T23, TZ, T1z, TQ, T1g, TV;
Chris@82 47 E T1l, TT, TU, T1j, T1k, T1c, T1Y, TK, T1u;
Chris@82 48 {
Chris@82 49 E Td, Tp, Tg, Tq, Th, Tr, T6, Tm, T9, Tn, Ta, To, T1, T2;
Chris@82 50 T1 = Rp[0];
Chris@82 51 T2 = Rm[WS(rs, 4)];
Chris@82 52 T3 = T1 + T2;
Chris@82 53 Tl = T1 - T2;
Chris@82 54 {
Chris@82 55 E Tb, Tc, Te, Tf;
Chris@82 56 Tb = Rp[WS(rs, 4)];
Chris@82 57 Tc = Rm[0];
Chris@82 58 Td = Tb + Tc;
Chris@82 59 Tp = Tb - Tc;
Chris@82 60 Te = Rm[WS(rs, 3)];
Chris@82 61 Tf = Rp[WS(rs, 1)];
Chris@82 62 Tg = Te + Tf;
Chris@82 63 Tq = Te - Tf;
Chris@82 64 }
Chris@82 65 Th = Td + Tg;
Chris@82 66 Tr = Tp + Tq;
Chris@82 67 {
Chris@82 68 E T4, T5, T7, T8;
Chris@82 69 T4 = Rp[WS(rs, 2)];
Chris@82 70 T5 = Rm[WS(rs, 2)];
Chris@82 71 T6 = T4 + T5;
Chris@82 72 Tm = T4 - T5;
Chris@82 73 T7 = Rm[WS(rs, 1)];
Chris@82 74 T8 = Rp[WS(rs, 3)];
Chris@82 75 T9 = T7 + T8;
Chris@82 76 Tn = T7 - T8;
Chris@82 77 }
Chris@82 78 Ta = T6 + T9;
Chris@82 79 To = Tm + Tn;
Chris@82 80 Tu = To - Tr;
Chris@82 81 T14 = Ta - Th;
Chris@82 82 Ti = Ta + Th;
Chris@82 83 T13 = FNMS(KP250000000, Ti, T3);
Chris@82 84 Ts = To + Tr;
Chris@82 85 Tt = FNMS(KP250000000, Ts, Tl);
Chris@82 86 {
Chris@82 87 E T1n, T1o, TX, TY;
Chris@82 88 T1n = Td - Tg;
Chris@82 89 T1o = T6 - T9;
Chris@82 90 T1p = FNMS(KP618033988, T1o, T1n);
Chris@82 91 T23 = FMA(KP618033988, T1n, T1o);
Chris@82 92 TX = Tm - Tn;
Chris@82 93 TY = Tp - Tq;
Chris@82 94 TZ = FMA(KP618033988, TY, TX);
Chris@82 95 T1z = FNMS(KP618033988, TX, TY);
Chris@82 96 }
Chris@82 97 }
Chris@82 98 {
Chris@82 99 E TF, T16, TI, T17, TS, T1i, Ty, T19, TB, T1a, TR, T1h, TO, TP;
Chris@82 100 TO = Ip[0];
Chris@82 101 TP = Im[WS(rs, 4)];
Chris@82 102 TQ = TO + TP;
Chris@82 103 T1g = TO - TP;
Chris@82 104 {
Chris@82 105 E TD, TE, TG, TH;
Chris@82 106 TD = Ip[WS(rs, 4)];
Chris@82 107 TE = Im[0];
Chris@82 108 TF = TD + TE;
Chris@82 109 T16 = TD - TE;
Chris@82 110 TG = Im[WS(rs, 3)];
Chris@82 111 TH = Ip[WS(rs, 1)];
Chris@82 112 TI = TG + TH;
Chris@82 113 T17 = TH - TG;
Chris@82 114 }
Chris@82 115 TS = TF - TI;
Chris@82 116 T1i = T16 + T17;
Chris@82 117 {
Chris@82 118 E Tw, Tx, Tz, TA;
Chris@82 119 Tw = Ip[WS(rs, 2)];
Chris@82 120 Tx = Im[WS(rs, 2)];
Chris@82 121 Ty = Tw + Tx;
Chris@82 122 T19 = Tw - Tx;
Chris@82 123 Tz = Im[WS(rs, 1)];
Chris@82 124 TA = Ip[WS(rs, 3)];
Chris@82 125 TB = Tz + TA;
Chris@82 126 T1a = TA - Tz;
Chris@82 127 }
Chris@82 128 TR = Ty - TB;
Chris@82 129 T1h = T19 + T1a;
Chris@82 130 TV = TR - TS;
Chris@82 131 T1l = T1h - T1i;
Chris@82 132 TT = TR + TS;
Chris@82 133 TU = FNMS(KP250000000, TT, TQ);
Chris@82 134 T1j = T1h + T1i;
Chris@82 135 T1k = FNMS(KP250000000, T1j, T1g);
Chris@82 136 {
Chris@82 137 E T18, T1b, TC, TJ;
Chris@82 138 T18 = T16 - T17;
Chris@82 139 T1b = T19 - T1a;
Chris@82 140 T1c = FNMS(KP618033988, T1b, T18);
Chris@82 141 T1Y = FMA(KP618033988, T18, T1b);
Chris@82 142 TC = Ty + TB;
Chris@82 143 TJ = TF + TI;
Chris@82 144 TK = FMA(KP618033988, TJ, TC);
Chris@82 145 T1u = FNMS(KP618033988, TC, TJ);
Chris@82 146 }
Chris@82 147 }
Chris@82 148 {
Chris@82 149 E Tj, T2y, T2a, T1A, T2q, T10, T1Q, T24, T2k, T1q, T1K, T26, T28, T29, T2c;
Chris@82 150 E Tk, TM, TN, T2w, T1M, T1O, T1P, T1S, T1s, T1w, T1x, T1C, T2m, T2o, T2p;
Chris@82 151 E T2s, T12, T1e, T1f, T1E, T1G, T1I, T1J, T1U, T1W, T20, T21, T2e, T2g, T2i;
Chris@82 152 E T2j, T2u, T1y, TW, T22, T2l, T2r;
Chris@82 153 Tj = T3 + Ti;
Chris@82 154 T2y = T1g + T1j;
Chris@82 155 T2a = TQ + TT;
Chris@82 156 T1y = FNMS(KP559016994, TV, TU);
Chris@82 157 T1A = FMA(KP951056516, T1z, T1y);
Chris@82 158 T2q = FNMS(KP951056516, T1z, T1y);
Chris@82 159 TW = FMA(KP559016994, TV, TU);
Chris@82 160 T10 = FMA(KP951056516, TZ, TW);
Chris@82 161 T1Q = FNMS(KP951056516, TZ, TW);
Chris@82 162 T22 = FMA(KP559016994, T1l, T1k);
Chris@82 163 T24 = FNMS(KP951056516, T23, T22);
Chris@82 164 T2k = FMA(KP951056516, T23, T22);
Chris@82 165 {
Chris@82 166 E T1m, T1v, T2n, T1t;
Chris@82 167 T1m = FNMS(KP559016994, T1l, T1k);
Chris@82 168 T1q = FNMS(KP951056516, T1p, T1m);
Chris@82 169 T1K = FMA(KP951056516, T1p, T1m);
Chris@82 170 {
Chris@82 171 E T27, TL, T1N, Tv;
Chris@82 172 T27 = Tl + Ts;
Chris@82 173 T26 = W[9];
Chris@82 174 T28 = T26 * T27;
Chris@82 175 T29 = W[8];
Chris@82 176 T2c = T29 * T27;
Chris@82 177 Tv = FMA(KP559016994, Tu, Tt);
Chris@82 178 TL = FNMS(KP951056516, TK, Tv);
Chris@82 179 T1N = FMA(KP951056516, TK, Tv);
Chris@82 180 Tk = W[1];
Chris@82 181 TM = Tk * TL;
Chris@82 182 TN = W[0];
Chris@82 183 T2w = TN * TL;
Chris@82 184 T1M = W[17];
Chris@82 185 T1O = T1M * T1N;
Chris@82 186 T1P = W[16];
Chris@82 187 T1S = T1P * T1N;
Chris@82 188 }
Chris@82 189 T1t = FNMS(KP559016994, Tu, Tt);
Chris@82 190 T1v = FNMS(KP951056516, T1u, T1t);
Chris@82 191 T2n = FMA(KP951056516, T1u, T1t);
Chris@82 192 T1s = W[5];
Chris@82 193 T1w = T1s * T1v;
Chris@82 194 T1x = W[4];
Chris@82 195 T1C = T1x * T1v;
Chris@82 196 T2m = W[13];
Chris@82 197 T2o = T2m * T2n;
Chris@82 198 T2p = W[12];
Chris@82 199 T2s = T2p * T2n;
Chris@82 200 {
Chris@82 201 E T1d, T1H, T15, T1Z, T2h, T1X;
Chris@82 202 T15 = FNMS(KP559016994, T14, T13);
Chris@82 203 T1d = FMA(KP951056516, T1c, T15);
Chris@82 204 T1H = FNMS(KP951056516, T1c, T15);
Chris@82 205 T12 = W[2];
Chris@82 206 T1e = T12 * T1d;
Chris@82 207 T1f = W[3];
Chris@82 208 T1E = T1f * T1d;
Chris@82 209 T1G = W[14];
Chris@82 210 T1I = T1G * T1H;
Chris@82 211 T1J = W[15];
Chris@82 212 T1U = T1J * T1H;
Chris@82 213 T1X = FMA(KP559016994, T14, T13);
Chris@82 214 T1Z = FMA(KP951056516, T1Y, T1X);
Chris@82 215 T2h = FNMS(KP951056516, T1Y, T1X);
Chris@82 216 T1W = W[6];
Chris@82 217 T20 = T1W * T1Z;
Chris@82 218 T21 = W[7];
Chris@82 219 T2e = T21 * T1Z;
Chris@82 220 T2g = W[10];
Chris@82 221 T2i = T2g * T2h;
Chris@82 222 T2j = W[11];
Chris@82 223 T2u = T2j * T2h;
Chris@82 224 }
Chris@82 225 }
Chris@82 226 {
Chris@82 227 E T11, T2x, T1r, T1B;
Chris@82 228 T11 = FMA(TN, T10, TM);
Chris@82 229 Rp[0] = Tj - T11;
Chris@82 230 Rm[0] = Tj + T11;
Chris@82 231 T2x = FNMS(Tk, T10, T2w);
Chris@82 232 Im[0] = T2x - T2y;
Chris@82 233 Ip[0] = T2x + T2y;
Chris@82 234 T1r = FNMS(T1f, T1q, T1e);
Chris@82 235 T1B = FMA(T1x, T1A, T1w);
Chris@82 236 Rp[WS(rs, 1)] = T1r - T1B;
Chris@82 237 Rm[WS(rs, 1)] = T1B + T1r;
Chris@82 238 {
Chris@82 239 E T1D, T1F, T1L, T1R;
Chris@82 240 T1D = FNMS(T1s, T1A, T1C);
Chris@82 241 T1F = FMA(T12, T1q, T1E);
Chris@82 242 Im[WS(rs, 1)] = T1D - T1F;
Chris@82 243 Ip[WS(rs, 1)] = T1D + T1F;
Chris@82 244 T1L = FNMS(T1J, T1K, T1I);
Chris@82 245 T1R = FMA(T1P, T1Q, T1O);
Chris@82 246 Rp[WS(rs, 4)] = T1L - T1R;
Chris@82 247 Rm[WS(rs, 4)] = T1R + T1L;
Chris@82 248 }
Chris@82 249 }
Chris@82 250 {
Chris@82 251 E T1T, T1V, T2t, T2v;
Chris@82 252 T1T = FNMS(T1M, T1Q, T1S);
Chris@82 253 T1V = FMA(T1G, T1K, T1U);
Chris@82 254 Im[WS(rs, 4)] = T1T - T1V;
Chris@82 255 Ip[WS(rs, 4)] = T1T + T1V;
Chris@82 256 T2t = FNMS(T2m, T2q, T2s);
Chris@82 257 T2v = FMA(T2g, T2k, T2u);
Chris@82 258 Im[WS(rs, 3)] = T2t - T2v;
Chris@82 259 Ip[WS(rs, 3)] = T2t + T2v;
Chris@82 260 }
Chris@82 261 T2l = FNMS(T2j, T2k, T2i);
Chris@82 262 T2r = FMA(T2p, T2q, T2o);
Chris@82 263 Rp[WS(rs, 3)] = T2l - T2r;
Chris@82 264 Rm[WS(rs, 3)] = T2r + T2l;
Chris@82 265 {
Chris@82 266 E T25, T2b, T2d, T2f;
Chris@82 267 T25 = FNMS(T21, T24, T20);
Chris@82 268 T2b = FMA(T29, T2a, T28);
Chris@82 269 Rp[WS(rs, 2)] = T25 - T2b;
Chris@82 270 Rm[WS(rs, 2)] = T2b + T25;
Chris@82 271 T2d = FNMS(T26, T2a, T2c);
Chris@82 272 T2f = FMA(T1W, T24, T2e);
Chris@82 273 Im[WS(rs, 2)] = T2d - T2f;
Chris@82 274 Ip[WS(rs, 2)] = T2d + T2f;
Chris@82 275 }
Chris@82 276 }
Chris@82 277 }
Chris@82 278 }
Chris@82 279 }
Chris@82 280
Chris@82 281 static const tw_instr twinstr[] = {
Chris@82 282 {TW_FULL, 1, 10},
Chris@82 283 {TW_NEXT, 1, 0}
Chris@82 284 };
Chris@82 285
Chris@82 286 static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {68, 18, 54, 0} };
Chris@82 287
Chris@82 288 void X(codelet_hc2cbdft_10) (planner *p) {
Chris@82 289 X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
Chris@82 290 }
Chris@82 291 #else
Chris@82 292
Chris@82 293 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
Chris@82 294
Chris@82 295 /*
Chris@82 296 * This function contains 122 FP additions, 60 FP multiplications,
Chris@82 297 * (or, 92 additions, 30 multiplications, 30 fused multiply/add),
Chris@82 298 * 61 stack variables, 4 constants, and 40 memory accesses
Chris@82 299 */
Chris@82 300 #include "rdft/scalar/hc2cb.h"
Chris@82 301
Chris@82 302 static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 303 {
Chris@82 304 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 305 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@82 306 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 307 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 308 {
Chris@82 309 INT m;
Chris@82 310 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
Chris@82 311 E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;
Chris@82 312 E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;
Chris@82 313 {
Chris@82 314 E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;
Chris@82 315 T1 = Rp[0];
Chris@82 316 T2 = Rm[WS(rs, 4)];
Chris@82 317 T3 = T1 + T2;
Chris@82 318 TS = T1 - T2;
Chris@82 319 {
Chris@82 320 E Tb, Tc, Te, Tf;
Chris@82 321 Tb = Rp[WS(rs, 4)];
Chris@82 322 Tc = Rm[0];
Chris@82 323 Td = Tb + Tc;
Chris@82 324 To = Tb - Tc;
Chris@82 325 Te = Rm[WS(rs, 3)];
Chris@82 326 Tf = Rp[WS(rs, 1)];
Chris@82 327 Tg = Te + Tf;
Chris@82 328 Tp = Te - Tf;
Chris@82 329 }
Chris@82 330 Th = Td + Tg;
Chris@82 331 TQ = To + Tp;
Chris@82 332 {
Chris@82 333 E T4, T5, T7, T8;
Chris@82 334 T4 = Rp[WS(rs, 2)];
Chris@82 335 T5 = Rm[WS(rs, 2)];
Chris@82 336 T6 = T4 + T5;
Chris@82 337 Tl = T4 - T5;
Chris@82 338 T7 = Rm[WS(rs, 1)];
Chris@82 339 T8 = Rp[WS(rs, 3)];
Chris@82 340 T9 = T7 + T8;
Chris@82 341 Tm = T7 - T8;
Chris@82 342 }
Chris@82 343 Ta = T6 + T9;
Chris@82 344 TP = Tl + Tm;
Chris@82 345 TR = KP559016994 * (TP - TQ);
Chris@82 346 T13 = KP559016994 * (Ta - Th);
Chris@82 347 Ti = Ta + Th;
Chris@82 348 T12 = FNMS(KP250000000, Ti, T3);
Chris@82 349 TT = TP + TQ;
Chris@82 350 TU = FNMS(KP250000000, TT, TS);
Chris@82 351 {
Chris@82 352 E T1e, T1f, Tn, Tq;
Chris@82 353 T1e = T6 - T9;
Chris@82 354 T1f = Td - Tg;
Chris@82 355 T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);
Chris@82 356 T1T = FMA(KP951056516, T1e, KP587785252 * T1f);
Chris@82 357 Tn = Tl - Tm;
Chris@82 358 Tq = To - Tp;
Chris@82 359 Tr = FMA(KP951056516, Tn, KP587785252 * Tq);
Chris@82 360 T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);
Chris@82 361 }
Chris@82 362 }
Chris@82 363 {
Chris@82 364 E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;
Chris@82 365 TH = Ip[0];
Chris@82 366 TI = Im[WS(rs, 4)];
Chris@82 367 TJ = TH + TI;
Chris@82 368 T1h = TH - TI;
Chris@82 369 {
Chris@82 370 E Tz, TA, TC, TD;
Chris@82 371 Tz = Ip[WS(rs, 4)];
Chris@82 372 TA = Im[0];
Chris@82 373 TB = Tz + TA;
Chris@82 374 T18 = Tz - TA;
Chris@82 375 TC = Im[WS(rs, 3)];
Chris@82 376 TD = Ip[WS(rs, 1)];
Chris@82 377 TE = TC + TD;
Chris@82 378 T19 = TD - TC;
Chris@82 379 }
Chris@82 380 TF = TB - TE;
Chris@82 381 T1j = T18 + T19;
Chris@82 382 {
Chris@82 383 E Ts, Tt, Tv, Tw;
Chris@82 384 Ts = Ip[WS(rs, 2)];
Chris@82 385 Tt = Im[WS(rs, 2)];
Chris@82 386 Tu = Ts + Tt;
Chris@82 387 T15 = Ts - Tt;
Chris@82 388 Tv = Im[WS(rs, 1)];
Chris@82 389 Tw = Ip[WS(rs, 3)];
Chris@82 390 Tx = Tv + Tw;
Chris@82 391 T16 = Tw - Tv;
Chris@82 392 }
Chris@82 393 Ty = Tu - Tx;
Chris@82 394 T1i = T15 + T16;
Chris@82 395 TG = KP559016994 * (Ty - TF);
Chris@82 396 T1m = KP559016994 * (T1i - T1j);
Chris@82 397 TK = Ty + TF;
Chris@82 398 TL = FNMS(KP250000000, TK, TJ);
Chris@82 399 T1k = T1i + T1j;
Chris@82 400 T1l = FNMS(KP250000000, T1k, T1h);
Chris@82 401 {
Chris@82 402 E T17, T1a, TW, TX;
Chris@82 403 T17 = T15 - T16;
Chris@82 404 T1a = T18 - T19;
Chris@82 405 T1b = FNMS(KP951056516, T1a, KP587785252 * T17);
Chris@82 406 T1P = FMA(KP951056516, T17, KP587785252 * T1a);
Chris@82 407 TW = Tu + Tx;
Chris@82 408 TX = TB + TE;
Chris@82 409 TY = FMA(KP951056516, TW, KP587785252 * TX);
Chris@82 410 T1w = FNMS(KP951056516, TX, KP587785252 * TW);
Chris@82 411 }
Chris@82 412 }
Chris@82 413 {
Chris@82 414 E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;
Chris@82 415 E T1E, T1x, T2b, T20, T21, TM, T1S, TV;
Chris@82 416 Tj = T3 + Ti;
Chris@82 417 T2g = T1h + T1k;
Chris@82 418 TM = TG + TL;
Chris@82 419 TN = Tr + TM;
Chris@82 420 T1H = TM - Tr;
Chris@82 421 T1S = T1m + T1l;
Chris@82 422 T1U = T1S - T1T;
Chris@82 423 T26 = T1T + T1S;
Chris@82 424 TV = TR + TU;
Chris@82 425 TZ = TV - TY;
Chris@82 426 T1J = TV + TY;
Chris@82 427 {
Chris@82 428 E T1O, T14, T1r, T1n, T1v;
Chris@82 429 T1O = T13 + T12;
Chris@82 430 T1Q = T1O + T1P;
Chris@82 431 T24 = T1O - T1P;
Chris@82 432 T14 = T12 - T13;
Chris@82 433 T1c = T14 - T1b;
Chris@82 434 T1C = T14 + T1b;
Chris@82 435 T1r = TL - TG;
Chris@82 436 T1t = T1r - T1s;
Chris@82 437 T29 = T1s + T1r;
Chris@82 438 T1n = T1l - T1m;
Chris@82 439 T1o = T1g + T1n;
Chris@82 440 T1E = T1n - T1g;
Chris@82 441 T1v = TU - TR;
Chris@82 442 T1x = T1v + T1w;
Chris@82 443 T2b = T1v - T1w;
Chris@82 444 {
Chris@82 445 E T1X, T1Z, T1W, T1Y;
Chris@82 446 T1X = TS + TT;
Chris@82 447 T1Z = TJ + TK;
Chris@82 448 T1W = W[9];
Chris@82 449 T1Y = W[8];
Chris@82 450 T20 = FMA(T1W, T1X, T1Y * T1Z);
Chris@82 451 T21 = FNMS(T1W, T1Z, T1Y * T1X);
Chris@82 452 }
Chris@82 453 }
Chris@82 454 {
Chris@82 455 E T10, T2f, Tk, TO;
Chris@82 456 Tk = W[0];
Chris@82 457 TO = W[1];
Chris@82 458 T10 = FMA(Tk, TN, TO * TZ);
Chris@82 459 T2f = FNMS(TO, TN, Tk * TZ);
Chris@82 460 Rp[0] = Tj - T10;
Chris@82 461 Ip[0] = T2f + T2g;
Chris@82 462 Rm[0] = Tj + T10;
Chris@82 463 Im[0] = T2f - T2g;
Chris@82 464 }
Chris@82 465 {
Chris@82 466 E T1V, T22, T1N, T1R;
Chris@82 467 T1N = W[6];
Chris@82 468 T1R = W[7];
Chris@82 469 T1V = FNMS(T1R, T1U, T1N * T1Q);
Chris@82 470 T22 = FMA(T1R, T1Q, T1N * T1U);
Chris@82 471 Rp[WS(rs, 2)] = T1V - T20;
Chris@82 472 Ip[WS(rs, 2)] = T21 + T22;
Chris@82 473 Rm[WS(rs, 2)] = T20 + T1V;
Chris@82 474 Im[WS(rs, 2)] = T21 - T22;
Chris@82 475 }
Chris@82 476 {
Chris@82 477 E T1p, T1A, T1y, T1z;
Chris@82 478 {
Chris@82 479 E T11, T1d, T1q, T1u;
Chris@82 480 T11 = W[2];
Chris@82 481 T1d = W[3];
Chris@82 482 T1p = FNMS(T1d, T1o, T11 * T1c);
Chris@82 483 T1A = FMA(T1d, T1c, T11 * T1o);
Chris@82 484 T1q = W[4];
Chris@82 485 T1u = W[5];
Chris@82 486 T1y = FMA(T1q, T1t, T1u * T1x);
Chris@82 487 T1z = FNMS(T1u, T1t, T1q * T1x);
Chris@82 488 }
Chris@82 489 Rp[WS(rs, 1)] = T1p - T1y;
Chris@82 490 Ip[WS(rs, 1)] = T1z + T1A;
Chris@82 491 Rm[WS(rs, 1)] = T1y + T1p;
Chris@82 492 Im[WS(rs, 1)] = T1z - T1A;
Chris@82 493 }
Chris@82 494 {
Chris@82 495 E T1F, T1M, T1K, T1L;
Chris@82 496 {
Chris@82 497 E T1B, T1D, T1G, T1I;
Chris@82 498 T1B = W[14];
Chris@82 499 T1D = W[15];
Chris@82 500 T1F = FNMS(T1D, T1E, T1B * T1C);
Chris@82 501 T1M = FMA(T1D, T1C, T1B * T1E);
Chris@82 502 T1G = W[16];
Chris@82 503 T1I = W[17];
Chris@82 504 T1K = FMA(T1G, T1H, T1I * T1J);
Chris@82 505 T1L = FNMS(T1I, T1H, T1G * T1J);
Chris@82 506 }
Chris@82 507 Rp[WS(rs, 4)] = T1F - T1K;
Chris@82 508 Ip[WS(rs, 4)] = T1L + T1M;
Chris@82 509 Rm[WS(rs, 4)] = T1K + T1F;
Chris@82 510 Im[WS(rs, 4)] = T1L - T1M;
Chris@82 511 }
Chris@82 512 {
Chris@82 513 E T27, T2e, T2c, T2d;
Chris@82 514 {
Chris@82 515 E T23, T25, T28, T2a;
Chris@82 516 T23 = W[10];
Chris@82 517 T25 = W[11];
Chris@82 518 T27 = FNMS(T25, T26, T23 * T24);
Chris@82 519 T2e = FMA(T25, T24, T23 * T26);
Chris@82 520 T28 = W[12];
Chris@82 521 T2a = W[13];
Chris@82 522 T2c = FMA(T28, T29, T2a * T2b);
Chris@82 523 T2d = FNMS(T2a, T29, T28 * T2b);
Chris@82 524 }
Chris@82 525 Rp[WS(rs, 3)] = T27 - T2c;
Chris@82 526 Ip[WS(rs, 3)] = T2d + T2e;
Chris@82 527 Rm[WS(rs, 3)] = T2c + T27;
Chris@82 528 Im[WS(rs, 3)] = T2d - T2e;
Chris@82 529 }
Chris@82 530 }
Chris@82 531 }
Chris@82 532 }
Chris@82 533 }
Chris@82 534
Chris@82 535 static const tw_instr twinstr[] = {
Chris@82 536 {TW_FULL, 1, 10},
Chris@82 537 {TW_NEXT, 1, 0}
Chris@82 538 };
Chris@82 539
Chris@82 540 static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {92, 30, 30, 0} };
Chris@82 541
Chris@82 542 void X(codelet_hc2cbdft_10) (planner *p) {
Chris@82 543 X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
Chris@82 544 }
Chris@82 545 #endif