annotate src/fftw-3.3.8/rdft/scalar/r2cb/hb_9.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:32 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 96 FP additions, 88 FP multiplications,
Chris@82 32 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
Chris@82 33 * 53 stack variables, 10 constants, and 36 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/hb.h"
Chris@82 36
Chris@82 37 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP954188894, +0.954188894138671133499268364187245676532219158);
Chris@82 40 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
Chris@82 41 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@82 42 DK(KP492403876, +0.492403876506104029683371512294761506835321626);
Chris@82 43 DK(KP777861913, +0.777861913430206160028177977318626690410586096);
Chris@82 44 DK(KP839099631, +0.839099631177280011763127298123181364687434283);
Chris@82 45 DK(KP176326980, +0.176326980708464973471090386868618986121633062);
Chris@82 46 DK(KP363970234, +0.363970234266202361351047882776834043890471784);
Chris@82 47 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 48 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 49 {
Chris@82 50 INT m;
Chris@82 51 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
Chris@82 52 E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, Tw, Tz, T1E, T1L, T1B, T1K, T14;
Chris@82 53 E T1d, TX, T1c;
Chris@82 54 {
Chris@82 55 E T1, Th, T4, T1a, Tk, TP, TO, T19;
Chris@82 56 T1 = cr[0];
Chris@82 57 Th = ci[WS(rs, 8)];
Chris@82 58 {
Chris@82 59 E T2, T3, Ti, Tj;
Chris@82 60 T2 = cr[WS(rs, 3)];
Chris@82 61 T3 = ci[WS(rs, 2)];
Chris@82 62 T4 = T2 + T3;
Chris@82 63 T1a = T2 - T3;
Chris@82 64 Ti = ci[WS(rs, 5)];
Chris@82 65 Tj = cr[WS(rs, 6)];
Chris@82 66 Tk = Ti - Tj;
Chris@82 67 TP = Ti + Tj;
Chris@82 68 }
Chris@82 69 T5 = T1 + T4;
Chris@82 70 Tl = Th + Tk;
Chris@82 71 TO = FNMS(KP500000000, T4, T1);
Chris@82 72 TQ = FNMS(KP866025403, TP, TO);
Chris@82 73 T1y = FMA(KP866025403, TP, TO);
Chris@82 74 T19 = FNMS(KP500000000, Tk, Th);
Chris@82 75 T1b = FMA(KP866025403, T1a, T19);
Chris@82 76 T1J = FNMS(KP866025403, T1a, T19);
Chris@82 77 }
Chris@82 78 {
Chris@82 79 E T6, T9, TY, T12, Tm, Tp, TZ, T11, Tb, Te, TS, TU, Tr, Tu, TR;
Chris@82 80 E TV;
Chris@82 81 {
Chris@82 82 E T7, T8, Tn, To;
Chris@82 83 T6 = cr[WS(rs, 1)];
Chris@82 84 T7 = cr[WS(rs, 4)];
Chris@82 85 T8 = ci[WS(rs, 1)];
Chris@82 86 T9 = T7 + T8;
Chris@82 87 TY = FNMS(KP500000000, T9, T6);
Chris@82 88 T12 = T7 - T8;
Chris@82 89 Tm = ci[WS(rs, 7)];
Chris@82 90 Tn = ci[WS(rs, 4)];
Chris@82 91 To = cr[WS(rs, 7)];
Chris@82 92 Tp = Tn - To;
Chris@82 93 TZ = Tn + To;
Chris@82 94 T11 = FMS(KP500000000, Tp, Tm);
Chris@82 95 }
Chris@82 96 {
Chris@82 97 E Tc, Td, Ts, Tt;
Chris@82 98 Tb = cr[WS(rs, 2)];
Chris@82 99 Tc = ci[WS(rs, 3)];
Chris@82 100 Td = ci[0];
Chris@82 101 Te = Tc + Td;
Chris@82 102 TS = Td - Tc;
Chris@82 103 TU = FNMS(KP500000000, Te, Tb);
Chris@82 104 Tr = ci[WS(rs, 6)];
Chris@82 105 Ts = cr[WS(rs, 5)];
Chris@82 106 Tt = cr[WS(rs, 8)];
Chris@82 107 Tu = Ts + Tt;
Chris@82 108 TR = FMA(KP500000000, Tu, Tr);
Chris@82 109 TV = Ts - Tt;
Chris@82 110 }
Chris@82 111 {
Chris@82 112 E Ta, Tf, T1z, T1A;
Chris@82 113 Ta = T6 + T9;
Chris@82 114 Tf = Tb + Te;
Chris@82 115 Tg = Ta + Tf;
Chris@82 116 TE = Ta - Tf;
Chris@82 117 {
Chris@82 118 E Tq, Tv, T1C, T1D;
Chris@82 119 Tq = Tm + Tp;
Chris@82 120 Tv = Tr - Tu;
Chris@82 121 Tw = Tq + Tv;
Chris@82 122 Tz = Tv - Tq;
Chris@82 123 T1C = FNMS(KP866025403, TV, TU);
Chris@82 124 T1D = FMA(KP866025403, TS, TR);
Chris@82 125 T1E = FMA(KP363970234, T1D, T1C);
Chris@82 126 T1L = FNMS(KP363970234, T1C, T1D);
Chris@82 127 }
Chris@82 128 T1z = FMA(KP866025403, T12, T11);
Chris@82 129 T1A = FMA(KP866025403, TZ, TY);
Chris@82 130 T1B = FMA(KP176326980, T1A, T1z);
Chris@82 131 T1K = FNMS(KP176326980, T1z, T1A);
Chris@82 132 {
Chris@82 133 E T10, T13, TT, TW;
Chris@82 134 T10 = FNMS(KP866025403, TZ, TY);
Chris@82 135 T13 = FNMS(KP866025403, T12, T11);
Chris@82 136 T14 = FMA(KP839099631, T13, T10);
Chris@82 137 T1d = FNMS(KP839099631, T10, T13);
Chris@82 138 TT = FNMS(KP866025403, TS, TR);
Chris@82 139 TW = FMA(KP866025403, TV, TU);
Chris@82 140 TX = FNMS(KP176326980, TW, TT);
Chris@82 141 T1c = FMA(KP176326980, TT, TW);
Chris@82 142 }
Chris@82 143 }
Chris@82 144 }
Chris@82 145 cr[0] = T5 + Tg;
Chris@82 146 ci[0] = Tl + Tw;
Chris@82 147 {
Chris@82 148 E TA, TI, TF, TL, Ty, TD;
Chris@82 149 Ty = FNMS(KP500000000, Tg, T5);
Chris@82 150 TA = FNMS(KP866025403, Tz, Ty);
Chris@82 151 TI = FMA(KP866025403, Tz, Ty);
Chris@82 152 TD = FNMS(KP500000000, Tw, Tl);
Chris@82 153 TF = FNMS(KP866025403, TE, TD);
Chris@82 154 TL = FMA(KP866025403, TE, TD);
Chris@82 155 {
Chris@82 156 E TB, TG, Tx, TC;
Chris@82 157 Tx = W[10];
Chris@82 158 TB = Tx * TA;
Chris@82 159 TG = Tx * TF;
Chris@82 160 TC = W[11];
Chris@82 161 cr[WS(rs, 6)] = FNMS(TC, TF, TB);
Chris@82 162 ci[WS(rs, 6)] = FMA(TC, TA, TG);
Chris@82 163 }
Chris@82 164 {
Chris@82 165 E TJ, TM, TH, TK;
Chris@82 166 TH = W[4];
Chris@82 167 TJ = TH * TI;
Chris@82 168 TM = TH * TL;
Chris@82 169 TK = W[5];
Chris@82 170 cr[WS(rs, 3)] = FNMS(TK, TL, TJ);
Chris@82 171 ci[WS(rs, 3)] = FMA(TK, TI, TM);
Chris@82 172 }
Chris@82 173 }
Chris@82 174 {
Chris@82 175 E T16, T1s, T1k, T1f, T1v, T1p;
Chris@82 176 {
Chris@82 177 E T1j, T15, T1i, T1o, T1e, T1n;
Chris@82 178 T1j = FMA(KP777861913, T1d, T1c);
Chris@82 179 T15 = FNMS(KP777861913, T14, TX);
Chris@82 180 T1i = FMA(KP492403876, T15, TQ);
Chris@82 181 T16 = FNMS(KP984807753, T15, TQ);
Chris@82 182 T1s = FMA(KP852868531, T1j, T1i);
Chris@82 183 T1k = FNMS(KP852868531, T1j, T1i);
Chris@82 184 T1o = FMA(KP777861913, T14, TX);
Chris@82 185 T1e = FNMS(KP777861913, T1d, T1c);
Chris@82 186 T1n = FNMS(KP492403876, T1e, T1b);
Chris@82 187 T1f = FMA(KP984807753, T1e, T1b);
Chris@82 188 T1v = FMA(KP852868531, T1o, T1n);
Chris@82 189 T1p = FNMS(KP852868531, T1o, T1n);
Chris@82 190 }
Chris@82 191 {
Chris@82 192 E TN, T17, T18, T1g;
Chris@82 193 TN = W[0];
Chris@82 194 T17 = TN * T16;
Chris@82 195 T18 = W[1];
Chris@82 196 T1g = T18 * T16;
Chris@82 197 cr[WS(rs, 1)] = FNMS(T18, T1f, T17);
Chris@82 198 ci[WS(rs, 1)] = FMA(TN, T1f, T1g);
Chris@82 199 }
Chris@82 200 {
Chris@82 201 E T1t, T1w, T1r, T1u;
Chris@82 202 T1r = W[6];
Chris@82 203 T1t = T1r * T1s;
Chris@82 204 T1w = T1r * T1v;
Chris@82 205 T1u = W[7];
Chris@82 206 cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t);
Chris@82 207 ci[WS(rs, 4)] = FMA(T1u, T1s, T1w);
Chris@82 208 }
Chris@82 209 {
Chris@82 210 E T1l, T1q, T1h, T1m;
Chris@82 211 T1h = W[12];
Chris@82 212 T1l = T1h * T1k;
Chris@82 213 T1q = T1h * T1p;
Chris@82 214 T1m = W[13];
Chris@82 215 cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l);
Chris@82 216 ci[WS(rs, 7)] = FMA(T1m, T1k, T1q);
Chris@82 217 }
Chris@82 218 }
Chris@82 219 {
Chris@82 220 E T1W, T1N, T1V, T1G, T20, T1S;
Chris@82 221 T1W = FMA(KP954188894, T1E, T1B);
Chris@82 222 {
Chris@82 223 E T1M, T1R, T1F, T1Q;
Chris@82 224 T1M = FNMS(KP954188894, T1L, T1K);
Chris@82 225 T1N = FMA(KP984807753, T1M, T1J);
Chris@82 226 T1V = FNMS(KP492403876, T1M, T1J);
Chris@82 227 T1R = FMA(KP954188894, T1L, T1K);
Chris@82 228 T1F = FNMS(KP954188894, T1E, T1B);
Chris@82 229 T1Q = FNMS(KP492403876, T1F, T1y);
Chris@82 230 T1G = FMA(KP984807753, T1F, T1y);
Chris@82 231 T20 = FMA(KP852868531, T1R, T1Q);
Chris@82 232 T1S = FNMS(KP852868531, T1R, T1Q);
Chris@82 233 }
Chris@82 234 {
Chris@82 235 E T1H, T1O, T1x, T1I;
Chris@82 236 T1x = W[2];
Chris@82 237 T1H = T1x * T1G;
Chris@82 238 T1O = T1x * T1N;
Chris@82 239 T1I = W[3];
Chris@82 240 cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H);
Chris@82 241 ci[WS(rs, 2)] = FMA(T1I, T1G, T1O);
Chris@82 242 }
Chris@82 243 {
Chris@82 244 E T23, T22, T24, T1Z, T21;
Chris@82 245 T23 = FNMS(KP852868531, T1W, T1V);
Chris@82 246 T22 = W[15];
Chris@82 247 T24 = T22 * T20;
Chris@82 248 T1Z = W[14];
Chris@82 249 T21 = T1Z * T20;
Chris@82 250 cr[WS(rs, 8)] = FNMS(T22, T23, T21);
Chris@82 251 ci[WS(rs, 8)] = FMA(T1Z, T23, T24);
Chris@82 252 }
Chris@82 253 {
Chris@82 254 E T1X, T1U, T1Y, T1P, T1T;
Chris@82 255 T1X = FMA(KP852868531, T1W, T1V);
Chris@82 256 T1U = W[9];
Chris@82 257 T1Y = T1U * T1S;
Chris@82 258 T1P = W[8];
Chris@82 259 T1T = T1P * T1S;
Chris@82 260 cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T);
Chris@82 261 ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y);
Chris@82 262 }
Chris@82 263 }
Chris@82 264 }
Chris@82 265 }
Chris@82 266 }
Chris@82 267
Chris@82 268 static const tw_instr twinstr[] = {
Chris@82 269 {TW_FULL, 1, 9},
Chris@82 270 {TW_NEXT, 1, 0}
Chris@82 271 };
Chris@82 272
Chris@82 273 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {24, 16, 72, 0} };
Chris@82 274
Chris@82 275 void X(codelet_hb_9) (planner *p) {
Chris@82 276 X(khc2hc_register) (p, hb_9, &desc);
Chris@82 277 }
Chris@82 278 #else
Chris@82 279
Chris@82 280 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */
Chris@82 281
Chris@82 282 /*
Chris@82 283 * This function contains 96 FP additions, 72 FP multiplications,
Chris@82 284 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
Chris@82 285 * 53 stack variables, 8 constants, and 36 memory accesses
Chris@82 286 */
Chris@82 287 #include "rdft/scalar/hb.h"
Chris@82 288
Chris@82 289 static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 290 {
Chris@82 291 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
Chris@82 292 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
Chris@82 293 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
Chris@82 294 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
Chris@82 295 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
Chris@82 296 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
Chris@82 297 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 298 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 299 {
Chris@82 300 INT m;
Chris@82 301 for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
Chris@82 302 E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u;
Chris@82 303 E T1A, T1r, T1z, T10, T18;
Chris@82 304 {
Chris@82 305 E T1, Th, T4, T14, Tk, TL, TK, T15;
Chris@82 306 T1 = cr[0];
Chris@82 307 Th = ci[WS(rs, 8)];
Chris@82 308 {
Chris@82 309 E T2, T3, Ti, Tj;
Chris@82 310 T2 = cr[WS(rs, 3)];
Chris@82 311 T3 = ci[WS(rs, 2)];
Chris@82 312 T4 = T2 + T3;
Chris@82 313 T14 = KP866025403 * (T2 - T3);
Chris@82 314 Ti = ci[WS(rs, 5)];
Chris@82 315 Tj = cr[WS(rs, 6)];
Chris@82 316 Tk = Ti - Tj;
Chris@82 317 TL = KP866025403 * (Ti + Tj);
Chris@82 318 }
Chris@82 319 T5 = T1 + T4;
Chris@82 320 Tl = Th + Tk;
Chris@82 321 TK = FNMS(KP500000000, T4, T1);
Chris@82 322 TM = TK - TL;
Chris@82 323 T1o = TK + TL;
Chris@82 324 T15 = FNMS(KP500000000, Tk, Th);
Chris@82 325 T16 = T14 + T15;
Chris@82 326 T1y = T15 - T14;
Chris@82 327 }
Chris@82 328 {
Chris@82 329 E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV;
Chris@82 330 E TY;
Chris@82 331 {
Chris@82 332 E T7, T8, Tn, To;
Chris@82 333 T6 = cr[WS(rs, 1)];
Chris@82 334 T7 = cr[WS(rs, 4)];
Chris@82 335 T8 = ci[WS(rs, 1)];
Chris@82 336 T9 = T7 + T8;
Chris@82 337 TN = FNMS(KP500000000, T9, T6);
Chris@82 338 TQ = KP866025403 * (T7 - T8);
Chris@82 339 Tm = ci[WS(rs, 7)];
Chris@82 340 Tn = ci[WS(rs, 4)];
Chris@82 341 To = cr[WS(rs, 7)];
Chris@82 342 Tp = Tn - To;
Chris@82 343 TO = KP866025403 * (Tn + To);
Chris@82 344 TR = FNMS(KP500000000, Tp, Tm);
Chris@82 345 }
Chris@82 346 {
Chris@82 347 E Tc, Td, Ts, Tt;
Chris@82 348 Tb = cr[WS(rs, 2)];
Chris@82 349 Tc = ci[WS(rs, 3)];
Chris@82 350 Td = ci[0];
Chris@82 351 Te = Tc + Td;
Chris@82 352 TU = FNMS(KP500000000, Te, Tb);
Chris@82 353 TX = KP866025403 * (Tc - Td);
Chris@82 354 Tr = ci[WS(rs, 6)];
Chris@82 355 Ts = cr[WS(rs, 5)];
Chris@82 356 Tt = cr[WS(rs, 8)];
Chris@82 357 Tu = Ts + Tt;
Chris@82 358 TV = KP866025403 * (Ts - Tt);
Chris@82 359 TY = FMA(KP500000000, Tu, Tr);
Chris@82 360 }
Chris@82 361 {
Chris@82 362 E TP, TS, T1s, T1t;
Chris@82 363 Ta = T6 + T9;
Chris@82 364 Tf = Tb + Te;
Chris@82 365 Tg = Ta + Tf;
Chris@82 366 Tq = Tm + Tp;
Chris@82 367 Tv = Tr - Tu;
Chris@82 368 Tw = Tq + Tv;
Chris@82 369 TP = TN - TO;
Chris@82 370 TS = TQ + TR;
Chris@82 371 TT = FNMS(KP642787609, TS, KP766044443 * TP);
Chris@82 372 T17 = FMA(KP766044443, TS, KP642787609 * TP);
Chris@82 373 T1s = TU - TV;
Chris@82 374 T1t = TY - TX;
Chris@82 375 T1u = FMA(KP939692620, T1s, KP342020143 * T1t);
Chris@82 376 T1A = FNMS(KP939692620, T1t, KP342020143 * T1s);
Chris@82 377 {
Chris@82 378 E T1p, T1q, TW, TZ;
Chris@82 379 T1p = TN + TO;
Chris@82 380 T1q = TR - TQ;
Chris@82 381 T1r = FNMS(KP984807753, T1q, KP173648177 * T1p);
Chris@82 382 T1z = FMA(KP173648177, T1q, KP984807753 * T1p);
Chris@82 383 TW = TU + TV;
Chris@82 384 TZ = TX + TY;
Chris@82 385 T10 = FNMS(KP984807753, TZ, KP173648177 * TW);
Chris@82 386 T18 = FMA(KP984807753, TW, KP173648177 * TZ);
Chris@82 387 }
Chris@82 388 }
Chris@82 389 }
Chris@82 390 cr[0] = T5 + Tg;
Chris@82 391 ci[0] = Tl + Tw;
Chris@82 392 {
Chris@82 393 E TA, TG, TE, TI;
Chris@82 394 {
Chris@82 395 E Ty, Tz, TC, TD;
Chris@82 396 Ty = FNMS(KP500000000, Tg, T5);
Chris@82 397 Tz = KP866025403 * (Tv - Tq);
Chris@82 398 TA = Ty - Tz;
Chris@82 399 TG = Ty + Tz;
Chris@82 400 TC = FNMS(KP500000000, Tw, Tl);
Chris@82 401 TD = KP866025403 * (Ta - Tf);
Chris@82 402 TE = TC - TD;
Chris@82 403 TI = TD + TC;
Chris@82 404 }
Chris@82 405 {
Chris@82 406 E Tx, TB, TF, TH;
Chris@82 407 Tx = W[10];
Chris@82 408 TB = W[11];
Chris@82 409 cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
Chris@82 410 ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
Chris@82 411 TF = W[4];
Chris@82 412 TH = W[5];
Chris@82 413 cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG);
Chris@82 414 ci[WS(rs, 3)] = FMA(TF, TI, TH * TG);
Chris@82 415 }
Chris@82 416 }
Chris@82 417 {
Chris@82 418 E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13;
Chris@82 419 T1d = KP866025403 * (T18 - T17);
Chris@82 420 T1h = KP866025403 * (TT - T10);
Chris@82 421 T11 = TT + T10;
Chris@82 422 T12 = TM + T11;
Chris@82 423 T1c = FNMS(KP500000000, T11, TM);
Chris@82 424 T19 = T17 + T18;
Chris@82 425 T1a = T16 + T19;
Chris@82 426 T1g = FNMS(KP500000000, T19, T16);
Chris@82 427 TJ = W[0];
Chris@82 428 T13 = W[1];
Chris@82 429 cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12);
Chris@82 430 ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a);
Chris@82 431 {
Chris@82 432 E T1k, T1m, T1j, T1l;
Chris@82 433 T1k = T1c + T1d;
Chris@82 434 T1m = T1h + T1g;
Chris@82 435 T1j = W[6];
Chris@82 436 T1l = W[7];
Chris@82 437 cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k);
Chris@82 438 ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k);
Chris@82 439 }
Chris@82 440 {
Chris@82 441 E T1e, T1i, T1b, T1f;
Chris@82 442 T1e = T1c - T1d;
Chris@82 443 T1i = T1g - T1h;
Chris@82 444 T1b = W[12];
Chris@82 445 T1f = W[13];
Chris@82 446 cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e);
Chris@82 447 ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e);
Chris@82 448 }
Chris@82 449 }
Chris@82 450 {
Chris@82 451 E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x;
Chris@82 452 T1F = KP866025403 * (T1A - T1z);
Chris@82 453 T1J = KP866025403 * (T1r + T1u);
Chris@82 454 T1v = T1r - T1u;
Chris@82 455 T1w = T1o + T1v;
Chris@82 456 T1E = FNMS(KP500000000, T1v, T1o);
Chris@82 457 T1B = T1z + T1A;
Chris@82 458 T1C = T1y + T1B;
Chris@82 459 T1I = FNMS(KP500000000, T1B, T1y);
Chris@82 460 T1n = W[2];
Chris@82 461 T1x = W[3];
Chris@82 462 cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w);
Chris@82 463 ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w);
Chris@82 464 {
Chris@82 465 E T1M, T1O, T1L, T1N;
Chris@82 466 T1M = T1F + T1E;
Chris@82 467 T1O = T1I + T1J;
Chris@82 468 T1L = W[8];
Chris@82 469 T1N = W[9];
Chris@82 470 cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M);
Chris@82 471 ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O);
Chris@82 472 }
Chris@82 473 {
Chris@82 474 E T1G, T1K, T1D, T1H;
Chris@82 475 T1G = T1E - T1F;
Chris@82 476 T1K = T1I - T1J;
Chris@82 477 T1D = W[14];
Chris@82 478 T1H = W[15];
Chris@82 479 cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G);
Chris@82 480 ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K);
Chris@82 481 }
Chris@82 482 }
Chris@82 483 }
Chris@82 484 }
Chris@82 485 }
Chris@82 486
Chris@82 487 static const tw_instr twinstr[] = {
Chris@82 488 {TW_FULL, 1, 9},
Chris@82 489 {TW_NEXT, 1, 0}
Chris@82 490 };
Chris@82 491
Chris@82 492 static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, {60, 36, 36, 0} };
Chris@82 493
Chris@82 494 void X(codelet_hb_9) (planner *p) {
Chris@82 495 X(khc2hc_register) (p, hb_9, &desc);
Chris@82 496 }
Chris@82 497 #endif