annotate src/fftw-3.3.8/rdft/scalar/r2cb/hb_5.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:07:31 EDT 2018 */
Chris@82 23
Chris@82 24 #include "rdft/codelet-rdft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 40 FP additions, 34 FP multiplications,
Chris@82 32 * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
Chris@82 33 * 27 stack variables, 4 constants, and 20 memory accesses
Chris@82 34 */
Chris@82 35 #include "rdft/scalar/hb.h"
Chris@82 36
Chris@82 37 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
Chris@82 43 {
Chris@82 44 INT m;
Chris@82 45 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@82 46 E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr;
Chris@82 47 {
Chris@82 48 E T4, Tu, T7, Tv;
Chris@82 49 T1 = cr[0];
Chris@82 50 {
Chris@82 51 E T2, T3, T5, T6;
Chris@82 52 T2 = cr[WS(rs, 1)];
Chris@82 53 T3 = ci[0];
Chris@82 54 T4 = T2 + T3;
Chris@82 55 Tu = T2 - T3;
Chris@82 56 T5 = cr[WS(rs, 2)];
Chris@82 57 T6 = ci[WS(rs, 1)];
Chris@82 58 T7 = T5 + T6;
Chris@82 59 Tv = T5 - T6;
Chris@82 60 }
Chris@82 61 Tb = T4 - T7;
Chris@82 62 TM = FNMS(KP618033988, Tu, Tv);
Chris@82 63 Tw = FMA(KP618033988, Tv, Tu);
Chris@82 64 T8 = T4 + T7;
Chris@82 65 Ta = FNMS(KP250000000, T8, T1);
Chris@82 66 }
Chris@82 67 {
Chris@82 68 E Tf, To, Ti, Tp;
Chris@82 69 Tn = ci[WS(rs, 4)];
Chris@82 70 {
Chris@82 71 E Td, Te, Tg, Th;
Chris@82 72 Td = ci[WS(rs, 3)];
Chris@82 73 Te = cr[WS(rs, 4)];
Chris@82 74 Tf = Td + Te;
Chris@82 75 To = Td - Te;
Chris@82 76 Tg = ci[WS(rs, 2)];
Chris@82 77 Th = cr[WS(rs, 3)];
Chris@82 78 Ti = Tg + Th;
Chris@82 79 Tp = Tg - Th;
Chris@82 80 }
Chris@82 81 Tj = FMA(KP618033988, Ti, Tf);
Chris@82 82 TH = FNMS(KP618033988, Tf, Ti);
Chris@82 83 Ts = To - Tp;
Chris@82 84 Tq = To + Tp;
Chris@82 85 Tr = FNMS(KP250000000, Tq, Tn);
Chris@82 86 }
Chris@82 87 cr[0] = T1 + T8;
Chris@82 88 ci[0] = Tn + Tq;
Chris@82 89 {
Chris@82 90 E Tk, TA, Tx, TD, Tc, Tt;
Chris@82 91 Tc = FMA(KP559016994, Tb, Ta);
Chris@82 92 Tk = FNMS(KP951056516, Tj, Tc);
Chris@82 93 TA = FMA(KP951056516, Tj, Tc);
Chris@82 94 Tt = FMA(KP559016994, Ts, Tr);
Chris@82 95 Tx = FMA(KP951056516, Tw, Tt);
Chris@82 96 TD = FNMS(KP951056516, Tw, Tt);
Chris@82 97 {
Chris@82 98 E T9, Tl, Tm, Ty;
Chris@82 99 T9 = W[0];
Chris@82 100 Tl = T9 * Tk;
Chris@82 101 Tm = W[1];
Chris@82 102 Ty = Tm * Tk;
Chris@82 103 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
Chris@82 104 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
Chris@82 105 }
Chris@82 106 {
Chris@82 107 E Tz, TB, TC, TE;
Chris@82 108 Tz = W[6];
Chris@82 109 TB = Tz * TA;
Chris@82 110 TC = W[7];
Chris@82 111 TE = TC * TA;
Chris@82 112 cr[WS(rs, 4)] = FNMS(TC, TD, TB);
Chris@82 113 ci[WS(rs, 4)] = FMA(Tz, TD, TE);
Chris@82 114 }
Chris@82 115 }
Chris@82 116 {
Chris@82 117 E TI, TQ, TN, TT, TG, TL;
Chris@82 118 TG = FNMS(KP559016994, Tb, Ta);
Chris@82 119 TI = FMA(KP951056516, TH, TG);
Chris@82 120 TQ = FNMS(KP951056516, TH, TG);
Chris@82 121 TL = FNMS(KP559016994, Ts, Tr);
Chris@82 122 TN = FNMS(KP951056516, TM, TL);
Chris@82 123 TT = FMA(KP951056516, TM, TL);
Chris@82 124 {
Chris@82 125 E TF, TJ, TK, TO;
Chris@82 126 TF = W[2];
Chris@82 127 TJ = TF * TI;
Chris@82 128 TK = W[3];
Chris@82 129 TO = TK * TI;
Chris@82 130 cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
Chris@82 131 ci[WS(rs, 2)] = FMA(TF, TN, TO);
Chris@82 132 }
Chris@82 133 {
Chris@82 134 E TP, TR, TS, TU;
Chris@82 135 TP = W[4];
Chris@82 136 TR = TP * TQ;
Chris@82 137 TS = W[5];
Chris@82 138 TU = TS * TQ;
Chris@82 139 cr[WS(rs, 3)] = FNMS(TS, TT, TR);
Chris@82 140 ci[WS(rs, 3)] = FMA(TP, TT, TU);
Chris@82 141 }
Chris@82 142 }
Chris@82 143 }
Chris@82 144 }
Chris@82 145 }
Chris@82 146
Chris@82 147 static const tw_instr twinstr[] = {
Chris@82 148 {TW_FULL, 1, 5},
Chris@82 149 {TW_NEXT, 1, 0}
Chris@82 150 };
Chris@82 151
Chris@82 152 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {14, 8, 26, 0} };
Chris@82 153
Chris@82 154 void X(codelet_hb_5) (planner *p) {
Chris@82 155 X(khc2hc_register) (p, hb_5, &desc);
Chris@82 156 }
Chris@82 157 #else
Chris@82 158
Chris@82 159 /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
Chris@82 160
Chris@82 161 /*
Chris@82 162 * This function contains 40 FP additions, 28 FP multiplications,
Chris@82 163 * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
Chris@82 164 * 27 stack variables, 4 constants, and 20 memory accesses
Chris@82 165 */
Chris@82 166 #include "rdft/scalar/hb.h"
Chris@82 167
Chris@82 168 static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 169 {
Chris@82 170 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@82 171 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
Chris@82 172 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
Chris@82 173 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
Chris@82 174 {
Chris@82 175 INT m;
Chris@82 176 for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
Chris@82 177 E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
Chris@82 178 {
Chris@82 179 E T4, Tq, T7, Tr;
Chris@82 180 T1 = cr[0];
Chris@82 181 {
Chris@82 182 E T2, T3, T5, T6;
Chris@82 183 T2 = cr[WS(rs, 1)];
Chris@82 184 T3 = ci[0];
Chris@82 185 T4 = T2 + T3;
Chris@82 186 Tq = T2 - T3;
Chris@82 187 T5 = cr[WS(rs, 2)];
Chris@82 188 T6 = ci[WS(rs, 1)];
Chris@82 189 T7 = T5 + T6;
Chris@82 190 Tr = T5 - T6;
Chris@82 191 }
Chris@82 192 Tj = KP559016994 * (T4 - T7);
Chris@82 193 TG = FMA(KP951056516, Tq, KP587785252 * Tr);
Chris@82 194 Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
Chris@82 195 T8 = T4 + T7;
Chris@82 196 Ti = FNMS(KP250000000, T8, T1);
Chris@82 197 }
Chris@82 198 {
Chris@82 199 E Tc, Tl, Tf, Tm;
Chris@82 200 T9 = ci[WS(rs, 4)];
Chris@82 201 {
Chris@82 202 E Ta, Tb, Td, Te;
Chris@82 203 Ta = ci[WS(rs, 3)];
Chris@82 204 Tb = cr[WS(rs, 4)];
Chris@82 205 Tc = Ta - Tb;
Chris@82 206 Tl = Ta + Tb;
Chris@82 207 Td = ci[WS(rs, 2)];
Chris@82 208 Te = cr[WS(rs, 3)];
Chris@82 209 Tf = Td - Te;
Chris@82 210 Tm = Td + Te;
Chris@82 211 }
Chris@82 212 Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
Chris@82 213 TD = FMA(KP951056516, Tl, KP587785252 * Tm);
Chris@82 214 Tu = KP559016994 * (Tc - Tf);
Chris@82 215 Tg = Tc + Tf;
Chris@82 216 Tt = FNMS(KP250000000, Tg, T9);
Chris@82 217 }
Chris@82 218 cr[0] = T1 + T8;
Chris@82 219 ci[0] = T9 + Tg;
Chris@82 220 {
Chris@82 221 E To, Ty, Tw, TA, Tk, Tv;
Chris@82 222 Tk = Ti - Tj;
Chris@82 223 To = Tk - Tn;
Chris@82 224 Ty = Tk + Tn;
Chris@82 225 Tv = Tt - Tu;
Chris@82 226 Tw = Ts + Tv;
Chris@82 227 TA = Tv - Ts;
Chris@82 228 {
Chris@82 229 E Th, Tp, Tx, Tz;
Chris@82 230 Th = W[2];
Chris@82 231 Tp = W[3];
Chris@82 232 cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
Chris@82 233 ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
Chris@82 234 Tx = W[4];
Chris@82 235 Tz = W[5];
Chris@82 236 cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
Chris@82 237 ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
Chris@82 238 }
Chris@82 239 }
Chris@82 240 {
Chris@82 241 E TE, TK, TI, TM, TC, TH;
Chris@82 242 TC = Tj + Ti;
Chris@82 243 TE = TC - TD;
Chris@82 244 TK = TC + TD;
Chris@82 245 TH = Tu + Tt;
Chris@82 246 TI = TG + TH;
Chris@82 247 TM = TH - TG;
Chris@82 248 {
Chris@82 249 E TB, TF, TJ, TL;
Chris@82 250 TB = W[0];
Chris@82 251 TF = W[1];
Chris@82 252 cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
Chris@82 253 ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
Chris@82 254 TJ = W[6];
Chris@82 255 TL = W[7];
Chris@82 256 cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
Chris@82 257 ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
Chris@82 258 }
Chris@82 259 }
Chris@82 260 }
Chris@82 261 }
Chris@82 262 }
Chris@82 263
Chris@82 264 static const tw_instr twinstr[] = {
Chris@82 265 {TW_FULL, 1, 5},
Chris@82 266 {TW_NEXT, 1, 0}
Chris@82 267 };
Chris@82 268
Chris@82 269 static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {26, 14, 14, 0} };
Chris@82 270
Chris@82 271 void X(codelet_hb_5) (planner *p) {
Chris@82 272 X(khc2hc_register) (p, hb_5, &desc);
Chris@82 273 }
Chris@82 274 #endif