annotate src/fftw-3.3.8/rdft/rank0.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21
Chris@82 22 /* plans for rank-0 RDFTs (copy operations) */
Chris@82 23
Chris@82 24 #include "rdft/rdft.h"
Chris@82 25
Chris@82 26 #ifdef HAVE_STRING_H
Chris@82 27 #include <string.h> /* for memcpy() */
Chris@82 28 #endif
Chris@82 29
Chris@82 30 #define MAXRNK 32 /* FIXME: should malloc() */
Chris@82 31
Chris@82 32 typedef struct {
Chris@82 33 plan_rdft super;
Chris@82 34 INT vl;
Chris@82 35 int rnk;
Chris@82 36 iodim d[MAXRNK];
Chris@82 37 const char *nam;
Chris@82 38 } P;
Chris@82 39
Chris@82 40 typedef struct {
Chris@82 41 solver super;
Chris@82 42 rdftapply apply;
Chris@82 43 int (*applicable)(const P *pln, const problem_rdft *p);
Chris@82 44 const char *nam;
Chris@82 45 } S;
Chris@82 46
Chris@82 47 /* copy up to MAXRNK dimensions from problem into plan. If a
Chris@82 48 contiguous dimension exists, save its length in pln->vl */
Chris@82 49 static int fill_iodim(P *pln, const problem_rdft *p)
Chris@82 50 {
Chris@82 51 int i;
Chris@82 52 const tensor *vecsz = p->vecsz;
Chris@82 53
Chris@82 54 pln->vl = 1;
Chris@82 55 pln->rnk = 0;
Chris@82 56 for (i = 0; i < vecsz->rnk; ++i) {
Chris@82 57 /* extract contiguous dimensions */
Chris@82 58 if (pln->vl == 1 &&
Chris@82 59 vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
Chris@82 60 pln->vl = vecsz->dims[i].n;
Chris@82 61 else if (pln->rnk == MAXRNK)
Chris@82 62 return 0;
Chris@82 63 else
Chris@82 64 pln->d[pln->rnk++] = vecsz->dims[i];
Chris@82 65 }
Chris@82 66
Chris@82 67 return 1;
Chris@82 68 }
Chris@82 69
Chris@82 70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
Chris@82 71 static void copy(const iodim *d, int rnk, INT vl,
Chris@82 72 R *I, R *O,
Chris@82 73 cpy2d_func cpy2d)
Chris@82 74 {
Chris@82 75 A(rnk >= 2);
Chris@82 76 if (rnk == 2)
Chris@82 77 cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
Chris@82 78 else {
Chris@82 79 INT i;
Chris@82 80 for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
Chris@82 81 copy(d + 1, rnk - 1, vl, I, O, cpy2d);
Chris@82 82 }
Chris@82 83 }
Chris@82 84
Chris@82 85 /* FIXME: should be more general */
Chris@82 86 static int transposep(const P *pln)
Chris@82 87 {
Chris@82 88 int i;
Chris@82 89
Chris@82 90 for (i = 0; i < pln->rnk - 2; ++i)
Chris@82 91 if (pln->d[i].is != pln->d[i].os)
Chris@82 92 return 0;
Chris@82 93
Chris@82 94 return (pln->d[i].n == pln->d[i+1].n &&
Chris@82 95 pln->d[i].is == pln->d[i+1].os &&
Chris@82 96 pln->d[i].os == pln->d[i+1].is);
Chris@82 97 }
Chris@82 98
Chris@82 99 /* generic higher-rank transpose routine, calls transpose2d() to do
Chris@82 100 * the real work */
Chris@82 101 static void transpose(const iodim *d, int rnk, INT vl,
Chris@82 102 R *I,
Chris@82 103 transpose_func transpose2d)
Chris@82 104 {
Chris@82 105 A(rnk >= 2);
Chris@82 106 if (rnk == 2)
Chris@82 107 transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
Chris@82 108 else {
Chris@82 109 INT i;
Chris@82 110 for (i = 0; i < d[0].n; ++i, I += d[0].is)
Chris@82 111 transpose(d + 1, rnk - 1, vl, I, transpose2d);
Chris@82 112 }
Chris@82 113 }
Chris@82 114
Chris@82 115 /**************************************************************/
Chris@82 116 /* rank 0,1,2, out of place, iterative */
Chris@82 117 static void apply_iter(const plan *ego_, R *I, R *O)
Chris@82 118 {
Chris@82 119 const P *ego = (const P *) ego_;
Chris@82 120
Chris@82 121 switch (ego->rnk) {
Chris@82 122 case 0:
Chris@82 123 X(cpy1d)(I, O, ego->vl, 1, 1, 1);
Chris@82 124 break;
Chris@82 125 case 1:
Chris@82 126 X(cpy1d)(I, O,
Chris@82 127 ego->d[0].n, ego->d[0].is, ego->d[0].os,
Chris@82 128 ego->vl);
Chris@82 129 break;
Chris@82 130 default:
Chris@82 131 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
Chris@82 132 break;
Chris@82 133 }
Chris@82 134 }
Chris@82 135
Chris@82 136 static int applicable_iter(const P *pln, const problem_rdft *p)
Chris@82 137 {
Chris@82 138 UNUSED(pln);
Chris@82 139 return (p->I != p->O);
Chris@82 140 }
Chris@82 141
Chris@82 142 /**************************************************************/
Chris@82 143 /* out of place, write contiguous output */
Chris@82 144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
Chris@82 145 {
Chris@82 146 const P *ego = (const P *) ego_;
Chris@82 147 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
Chris@82 148 }
Chris@82 149
Chris@82 150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
Chris@82 151 {
Chris@82 152 int rnk = pln->rnk;
Chris@82 153 return (1
Chris@82 154 && p->I != p->O
Chris@82 155 && rnk >= 2
Chris@82 156
Chris@82 157 /* must not duplicate apply_iter */
Chris@82 158 && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
Chris@82 159 ||
Chris@82 160 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
Chris@82 161 );
Chris@82 162 }
Chris@82 163
Chris@82 164 /**************************************************************/
Chris@82 165 /* out of place, tiled, no buffering */
Chris@82 166 static void apply_tiled(const plan *ego_, R *I, R *O)
Chris@82 167 {
Chris@82 168 const P *ego = (const P *) ego_;
Chris@82 169 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
Chris@82 170 }
Chris@82 171
Chris@82 172 static int applicable_tiled(const P *pln, const problem_rdft *p)
Chris@82 173 {
Chris@82 174 return (1
Chris@82 175 && p->I != p->O
Chris@82 176 && pln->rnk >= 2
Chris@82 177
Chris@82 178 /* somewhat arbitrary */
Chris@82 179 && X(compute_tilesz)(pln->vl, 1) > 4
Chris@82 180 );
Chris@82 181 }
Chris@82 182
Chris@82 183 /**************************************************************/
Chris@82 184 /* out of place, tiled, with buffer */
Chris@82 185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
Chris@82 186 {
Chris@82 187 const P *ego = (const P *) ego_;
Chris@82 188 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
Chris@82 189 }
Chris@82 190
Chris@82 191 #define applicable_tiledbuf applicable_tiled
Chris@82 192
Chris@82 193 /**************************************************************/
Chris@82 194 /* rank 0, out of place, using memcpy */
Chris@82 195 static void apply_memcpy(const plan *ego_, R *I, R *O)
Chris@82 196 {
Chris@82 197 const P *ego = (const P *) ego_;
Chris@82 198
Chris@82 199 A(ego->rnk == 0);
Chris@82 200 memcpy(O, I, ego->vl * sizeof(R));
Chris@82 201 }
Chris@82 202
Chris@82 203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
Chris@82 204 {
Chris@82 205 return (1
Chris@82 206 && p->I != p->O
Chris@82 207 && pln->rnk == 0
Chris@82 208 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
Chris@82 209 );
Chris@82 210 }
Chris@82 211
Chris@82 212 /**************************************************************/
Chris@82 213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
Chris@82 214 transposes of vl-tuples ... for large vl it should be more
Chris@82 215 efficient to use memcpy than the tiled stuff). */
Chris@82 216
Chris@82 217 static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
Chris@82 218 {
Chris@82 219 INT i, n = d->n, is = d->is, os = d->os;
Chris@82 220 if (rnk == 1)
Chris@82 221 for (i = 0; i < n; ++i, I += is, O += os)
Chris@82 222 memcpy(O, I, cpysz);
Chris@82 223 else {
Chris@82 224 --rnk; ++d;
Chris@82 225 for (i = 0; i < n; ++i, I += is, O += os)
Chris@82 226 memcpy_loop(cpysz, rnk, d, I, O);
Chris@82 227 }
Chris@82 228 }
Chris@82 229
Chris@82 230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
Chris@82 231 {
Chris@82 232 const P *ego = (const P *) ego_;
Chris@82 233 memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
Chris@82 234 }
Chris@82 235
Chris@82 236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
Chris@82 237 {
Chris@82 238 return (p->I != p->O
Chris@82 239 && pln->rnk > 0
Chris@82 240 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
Chris@82 241 }
Chris@82 242
Chris@82 243 /**************************************************************/
Chris@82 244 /* rank 2, in place, square transpose, iterative */
Chris@82 245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
Chris@82 246 {
Chris@82 247 const P *ego = (const P *) ego_;
Chris@82 248 UNUSED(O);
Chris@82 249 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
Chris@82 250 }
Chris@82 251
Chris@82 252
Chris@82 253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
Chris@82 254 {
Chris@82 255 return (1
Chris@82 256 && p->I == p->O
Chris@82 257 && pln->rnk >= 2
Chris@82 258 && transposep(pln));
Chris@82 259 }
Chris@82 260
Chris@82 261 /**************************************************************/
Chris@82 262 /* rank 2, in place, square transpose, tiled */
Chris@82 263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
Chris@82 264 {
Chris@82 265 const P *ego = (const P *) ego_;
Chris@82 266 UNUSED(O);
Chris@82 267 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
Chris@82 268 }
Chris@82 269
Chris@82 270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
Chris@82 271 {
Chris@82 272 return (1
Chris@82 273 && applicable_ip_sq(pln, p)
Chris@82 274
Chris@82 275 /* somewhat arbitrary */
Chris@82 276 && X(compute_tilesz)(pln->vl, 2) > 4
Chris@82 277 );
Chris@82 278 }
Chris@82 279
Chris@82 280 /**************************************************************/
Chris@82 281 /* rank 2, in place, square transpose, tiled, buffered */
Chris@82 282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
Chris@82 283 {
Chris@82 284 const P *ego = (const P *) ego_;
Chris@82 285 UNUSED(O);
Chris@82 286 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
Chris@82 287 }
Chris@82 288
Chris@82 289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
Chris@82 290
Chris@82 291 /**************************************************************/
Chris@82 292 static int applicable(const S *ego, const problem *p_)
Chris@82 293 {
Chris@82 294 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 295 P pln;
Chris@82 296 return (1
Chris@82 297 && p->sz->rnk == 0
Chris@82 298 && FINITE_RNK(p->vecsz->rnk)
Chris@82 299 && fill_iodim(&pln, p)
Chris@82 300 && ego->applicable(&pln, p)
Chris@82 301 );
Chris@82 302 }
Chris@82 303
Chris@82 304 static void print(const plan *ego_, printer *p)
Chris@82 305 {
Chris@82 306 const P *ego = (const P *) ego_;
Chris@82 307 int i;
Chris@82 308 p->print(p, "(%s/%D", ego->nam, ego->vl);
Chris@82 309 for (i = 0; i < ego->rnk; ++i)
Chris@82 310 p->print(p, "%v", ego->d[i].n);
Chris@82 311 p->print(p, ")");
Chris@82 312 }
Chris@82 313
Chris@82 314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 315 {
Chris@82 316 const problem_rdft *p;
Chris@82 317 const S *ego = (const S *) ego_;
Chris@82 318 P *pln;
Chris@82 319 int retval;
Chris@82 320
Chris@82 321 static const plan_adt padt = {
Chris@82 322 X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
Chris@82 323 };
Chris@82 324
Chris@82 325 UNUSED(plnr);
Chris@82 326
Chris@82 327 if (!applicable(ego, p_))
Chris@82 328 return (plan *) 0;
Chris@82 329
Chris@82 330 p = (const problem_rdft *) p_;
Chris@82 331 pln = MKPLAN_RDFT(P, &padt, ego->apply);
Chris@82 332
Chris@82 333 retval = fill_iodim(pln, p);
Chris@82 334 (void)retval; /* UNUSED unless DEBUG */
Chris@82 335 A(retval);
Chris@82 336 A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
Chris@82 337 pln->nam = ego->nam;
Chris@82 338
Chris@82 339 /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
Chris@82 340 X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
Chris@82 341 return &(pln->super.super);
Chris@82 342 }
Chris@82 343
Chris@82 344
Chris@82 345 void X(rdft_rank0_register)(planner *p)
Chris@82 346 {
Chris@82 347 unsigned i;
Chris@82 348 static struct {
Chris@82 349 rdftapply apply;
Chris@82 350 int (*applicable)(const P *, const problem_rdft *);
Chris@82 351 const char *nam;
Chris@82 352 } tab[] = {
Chris@82 353 { apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
Chris@82 354 { apply_memcpy_loop, applicable_memcpy_loop,
Chris@82 355 "rdft-rank0-memcpy-loop" },
Chris@82 356 { apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
Chris@82 357 { apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
Chris@82 358 { apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
Chris@82 359 { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
Chris@82 360 { apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
Chris@82 361 {
Chris@82 362 apply_ip_sq_tiled,
Chris@82 363 applicable_ip_sq_tiled,
Chris@82 364 "rdft-rank0-ip-sq-tiled"
Chris@82 365 },
Chris@82 366 {
Chris@82 367 apply_ip_sq_tiledbuf,
Chris@82 368 applicable_ip_sq_tiledbuf,
Chris@82 369 "rdft-rank0-ip-sq-tiledbuf"
Chris@82 370 },
Chris@82 371 };
Chris@82 372
Chris@82 373 for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
Chris@82 374 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 375 S *slv = MKSOLVER(S, &sadt);
Chris@82 376 slv->apply = tab[i].apply;
Chris@82 377 slv->applicable = tab[i].applicable;
Chris@82 378 slv->nam = tab[i].nam;
Chris@82 379 REGISTER_SOLVER(p, &(slv->super));
Chris@82 380 }
Chris@82 381 }