annotate src/fftw-3.3.8/rdft/hc2hc.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 #include "rdft/hc2hc.h"
Chris@82 22
Chris@82 23 hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0;
Chris@82 24
Chris@82 25 typedef struct {
Chris@82 26 plan_rdft super;
Chris@82 27 plan *cld;
Chris@82 28 plan *cldw;
Chris@82 29 INT r;
Chris@82 30 } P;
Chris@82 31
Chris@82 32 static void apply_dit(const plan *ego_, R *I, R *O)
Chris@82 33 {
Chris@82 34 const P *ego = (const P *) ego_;
Chris@82 35 plan_rdft *cld;
Chris@82 36 plan_hc2hc *cldw;
Chris@82 37
Chris@82 38 cld = (plan_rdft *) ego->cld;
Chris@82 39 cld->apply(ego->cld, I, O);
Chris@82 40
Chris@82 41 cldw = (plan_hc2hc *) ego->cldw;
Chris@82 42 cldw->apply(ego->cldw, O);
Chris@82 43 }
Chris@82 44
Chris@82 45 static void apply_dif(const plan *ego_, R *I, R *O)
Chris@82 46 {
Chris@82 47 const P *ego = (const P *) ego_;
Chris@82 48 plan_rdft *cld;
Chris@82 49 plan_hc2hc *cldw;
Chris@82 50
Chris@82 51 cldw = (plan_hc2hc *) ego->cldw;
Chris@82 52 cldw->apply(ego->cldw, I);
Chris@82 53
Chris@82 54 cld = (plan_rdft *) ego->cld;
Chris@82 55 cld->apply(ego->cld, I, O);
Chris@82 56 }
Chris@82 57
Chris@82 58 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@82 59 {
Chris@82 60 P *ego = (P *) ego_;
Chris@82 61 X(plan_awake)(ego->cld, wakefulness);
Chris@82 62 X(plan_awake)(ego->cldw, wakefulness);
Chris@82 63 }
Chris@82 64
Chris@82 65 static void destroy(plan *ego_)
Chris@82 66 {
Chris@82 67 P *ego = (P *) ego_;
Chris@82 68 X(plan_destroy_internal)(ego->cldw);
Chris@82 69 X(plan_destroy_internal)(ego->cld);
Chris@82 70 }
Chris@82 71
Chris@82 72 static void print(const plan *ego_, printer *p)
Chris@82 73 {
Chris@82 74 const P *ego = (const P *) ego_;
Chris@82 75 p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))",
Chris@82 76 ego->super.apply == apply_dit ? "dit" : "dif",
Chris@82 77 ego->r, ego->cldw, ego->cld);
Chris@82 78 }
Chris@82 79
Chris@82 80 static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@82 81 {
Chris@82 82 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 83 INT r;
Chris@82 84
Chris@82 85 return (1
Chris@82 86 && p->sz->rnk == 1
Chris@82 87 && p->vecsz->rnk <= 1
Chris@82 88
Chris@82 89 && (/* either the problem is R2HC, which is solved by DIT */
Chris@82 90 (p->kind[0] == R2HC)
Chris@82 91 ||
Chris@82 92 /* or the problem is HC2R, in which case it is solved
Chris@82 93 by DIF, which destroys the input */
Chris@82 94 (p->kind[0] == HC2R &&
Chris@82 95 (p->I == p->O || !NO_DESTROY_INPUTP(plnr))))
Chris@82 96
Chris@82 97 && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
Chris@82 98 && p->sz->dims[0].n > r);
Chris@82 99 }
Chris@82 100
Chris@82 101 int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@82 102 {
Chris@82 103 const problem_rdft *p;
Chris@82 104
Chris@82 105 if (!applicable0(ego, p_, plnr))
Chris@82 106 return 0;
Chris@82 107
Chris@82 108 p = (const problem_rdft *) p_;
Chris@82 109
Chris@82 110 return (0
Chris@82 111 || p->vecsz->rnk == 0
Chris@82 112 || !NO_VRECURSEP(plnr)
Chris@82 113 );
Chris@82 114 }
Chris@82 115
Chris@82 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 117 {
Chris@82 118 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
Chris@82 119 const problem_rdft *p;
Chris@82 120 P *pln = 0;
Chris@82 121 plan *cld = 0, *cldw = 0;
Chris@82 122 INT n, r, m, v, ivs, ovs;
Chris@82 123 iodim *d;
Chris@82 124
Chris@82 125 static const plan_adt padt = {
Chris@82 126 X(rdft_solve), awake, print, destroy
Chris@82 127 };
Chris@82 128
Chris@82 129 if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr))
Chris@82 130 return (plan *) 0;
Chris@82 131
Chris@82 132 p = (const problem_rdft *) p_;
Chris@82 133 d = p->sz->dims;
Chris@82 134 n = d[0].n;
Chris@82 135 r = X(choose_radix)(ego->r, n);
Chris@82 136 m = n / r;
Chris@82 137
Chris@82 138 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
Chris@82 139
Chris@82 140 switch (p->kind[0]) {
Chris@82 141 case R2HC:
Chris@82 142 cldw = ego->mkcldw(ego,
Chris@82 143 R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2,
Chris@82 144 p->O, plnr);
Chris@82 145 if (!cldw) goto nada;
Chris@82 146
Chris@82 147 cld = X(mkplan_d)(plnr,
Chris@82 148 X(mkproblem_rdft_d)(
Chris@82 149 X(mktensor_1d)(m, r * d[0].is, d[0].os),
Chris@82 150 X(mktensor_2d)(r, d[0].is, m * d[0].os,
Chris@82 151 v, ivs, ovs),
Chris@82 152 p->I, p->O, p->kind)
Chris@82 153 );
Chris@82 154 if (!cld) goto nada;
Chris@82 155
Chris@82 156 pln = MKPLAN_RDFT(P, &padt, apply_dit);
Chris@82 157 break;
Chris@82 158
Chris@82 159 case HC2R:
Chris@82 160 cldw = ego->mkcldw(ego,
Chris@82 161 HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2,
Chris@82 162 p->I, plnr);
Chris@82 163 if (!cldw) goto nada;
Chris@82 164
Chris@82 165 cld = X(mkplan_d)(plnr,
Chris@82 166 X(mkproblem_rdft_d)(
Chris@82 167 X(mktensor_1d)(m, d[0].is, r * d[0].os),
Chris@82 168 X(mktensor_2d)(r, m * d[0].is, d[0].os,
Chris@82 169 v, ivs, ovs),
Chris@82 170 p->I, p->O, p->kind)
Chris@82 171 );
Chris@82 172 if (!cld) goto nada;
Chris@82 173
Chris@82 174 pln = MKPLAN_RDFT(P, &padt, apply_dif);
Chris@82 175 break;
Chris@82 176
Chris@82 177 default:
Chris@82 178 A(0);
Chris@82 179 }
Chris@82 180
Chris@82 181 pln->cld = cld;
Chris@82 182 pln->cldw = cldw;
Chris@82 183 pln->r = r;
Chris@82 184 X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
Chris@82 185
Chris@82 186 /* inherit could_prune_now_p attribute from cldw */
Chris@82 187 pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
Chris@82 188
Chris@82 189 return &(pln->super.super);
Chris@82 190
Chris@82 191 nada:
Chris@82 192 X(plan_destroy_internal)(cldw);
Chris@82 193 X(plan_destroy_internal)(cld);
Chris@82 194 return (plan *) 0;
Chris@82 195 }
Chris@82 196
Chris@82 197 hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw)
Chris@82 198 {
Chris@82 199 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 200 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
Chris@82 201 slv->r = r;
Chris@82 202 slv->mkcldw = mkcldw;
Chris@82 203 return slv;
Chris@82 204 }
Chris@82 205
Chris@82 206 plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply)
Chris@82 207 {
Chris@82 208 plan_hc2hc *ego;
Chris@82 209
Chris@82 210 ego = (plan_hc2hc *) X(mkplan)(size, adt);
Chris@82 211 ego->apply = apply;
Chris@82 212
Chris@82 213 return &(ego->super);
Chris@82 214 }