annotate src/fftw-3.3.8/rdft/direct-r2r.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21
Chris@82 22 /* direct RDFT solver, using r2r codelets */
Chris@82 23
Chris@82 24 #include "rdft/rdft.h"
Chris@82 25
Chris@82 26 typedef struct {
Chris@82 27 solver super;
Chris@82 28 const kr2r_desc *desc;
Chris@82 29 kr2r k;
Chris@82 30 } S;
Chris@82 31
Chris@82 32 typedef struct {
Chris@82 33 plan_rdft super;
Chris@82 34
Chris@82 35 INT vl, ivs, ovs;
Chris@82 36 stride is, os;
Chris@82 37 kr2r k;
Chris@82 38 const S *slv;
Chris@82 39 } P;
Chris@82 40
Chris@82 41 static void apply(const plan *ego_, R *I, R *O)
Chris@82 42 {
Chris@82 43 const P *ego = (const P *) ego_;
Chris@82 44 ASSERT_ALIGNED_DOUBLE;
Chris@82 45 ego->k(I, O, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
Chris@82 46 }
Chris@82 47
Chris@82 48 static void destroy(plan *ego_)
Chris@82 49 {
Chris@82 50 P *ego = (P *) ego_;
Chris@82 51 X(stride_destroy)(ego->is);
Chris@82 52 X(stride_destroy)(ego->os);
Chris@82 53 }
Chris@82 54
Chris@82 55 static void print(const plan *ego_, printer *p)
Chris@82 56 {
Chris@82 57 const P *ego = (const P *) ego_;
Chris@82 58 const S *s = ego->slv;
Chris@82 59
Chris@82 60 p->print(p, "(rdft-%s-direct-r2r-%D%v \"%s\")",
Chris@82 61 X(rdft_kind_str)(s->desc->kind), s->desc->n,
Chris@82 62 ego->vl, s->desc->nam);
Chris@82 63 }
Chris@82 64
Chris@82 65 static int applicable(const solver *ego_, const problem *p_)
Chris@82 66 {
Chris@82 67 const S *ego = (const S *) ego_;
Chris@82 68 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 69 INT vl;
Chris@82 70 INT ivs, ovs;
Chris@82 71
Chris@82 72 return (
Chris@82 73 1
Chris@82 74 && p->sz->rnk == 1
Chris@82 75 && p->vecsz->rnk <= 1
Chris@82 76 && p->sz->dims[0].n == ego->desc->n
Chris@82 77 && p->kind[0] == ego->desc->kind
Chris@82 78
Chris@82 79 /* check strides etc */
Chris@82 80 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@82 81
Chris@82 82 && (0
Chris@82 83 /* can operate out-of-place */
Chris@82 84 || p->I != p->O
Chris@82 85
Chris@82 86 /* computing one transform */
Chris@82 87 || vl == 1
Chris@82 88
Chris@82 89 /* can operate in-place as long as strides are the same */
Chris@82 90 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@82 91 )
Chris@82 92 );
Chris@82 93 }
Chris@82 94
Chris@82 95 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 96 {
Chris@82 97 const S *ego = (const S *) ego_;
Chris@82 98 P *pln;
Chris@82 99 const problem_rdft *p;
Chris@82 100 iodim *d;
Chris@82 101
Chris@82 102 static const plan_adt padt = {
Chris@82 103 X(rdft_solve), X(null_awake), print, destroy
Chris@82 104 };
Chris@82 105
Chris@82 106 UNUSED(plnr);
Chris@82 107
Chris@82 108 if (!applicable(ego_, p_))
Chris@82 109 return (plan *)0;
Chris@82 110
Chris@82 111 p = (const problem_rdft *) p_;
Chris@82 112
Chris@82 113
Chris@82 114 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@82 115
Chris@82 116 d = p->sz->dims;
Chris@82 117
Chris@82 118 pln->k = ego->k;
Chris@82 119
Chris@82 120 pln->is = X(mkstride)(d->n, d->is);
Chris@82 121 pln->os = X(mkstride)(d->n, d->os);
Chris@82 122
Chris@82 123 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@82 124
Chris@82 125 pln->slv = ego;
Chris@82 126 X(ops_zero)(&pln->super.super.ops);
Chris@82 127 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
Chris@82 128 &ego->desc->ops,
Chris@82 129 &pln->super.super.ops);
Chris@82 130
Chris@82 131 pln->super.super.could_prune_now_p = 1;
Chris@82 132
Chris@82 133 return &(pln->super.super);
Chris@82 134 }
Chris@82 135
Chris@82 136 /* constructor */
Chris@82 137 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc)
Chris@82 138 {
Chris@82 139 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 140 S *slv = MKSOLVER(S, &sadt);
Chris@82 141 slv->k = k;
Chris@82 142 slv->desc = desc;
Chris@82 143 return &(slv->super);
Chris@82 144 }
Chris@82 145