annotate src/fftw-3.3.8/genfft/schedule.ml @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 (*
Chris@82 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
Chris@82 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 5 *
Chris@82 6 * This program is free software; you can redistribute it and/or modify
Chris@82 7 * it under the terms of the GNU General Public License as published by
Chris@82 8 * the Free Software Foundation; either version 2 of the License, or
Chris@82 9 * (at your option) any later version.
Chris@82 10 *
Chris@82 11 * This program is distributed in the hope that it will be useful,
Chris@82 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 14 * GNU General Public License for more details.
Chris@82 15 *
Chris@82 16 * You should have received a copy of the GNU General Public License
Chris@82 17 * along with this program; if not, write to the Free Software
Chris@82 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 19 *
Chris@82 20 *)
Chris@82 21
Chris@82 22 (* This file contains the instruction scheduler, which finds an
Chris@82 23 efficient ordering for a given list of instructions.
Chris@82 24
Chris@82 25 The scheduler analyzes the DAG (directed acyclic graph) formed by
Chris@82 26 the instruction dependencies, and recursively partitions it. The
Chris@82 27 resulting schedule data structure expresses a "good" ordering
Chris@82 28 and structure for the computation.
Chris@82 29
Chris@82 30 The scheduler makes use of utilties in Dag and other packages to
Chris@82 31 manipulate the Dag and the instruction list. *)
Chris@82 32
Chris@82 33 open Dag
Chris@82 34 (*************************************************
Chris@82 35 * Dag scheduler
Chris@82 36 *************************************************)
Chris@82 37 let to_assignment node = (Expr.Assign (node.assigned, node.expression))
Chris@82 38 let makedag l = Dag.makedag
Chris@82 39 (List.map (function Expr.Assign (v, x) -> (v, x)) l)
Chris@82 40
Chris@82 41 let return x = x
Chris@82 42 let has_color c n = (n.color = c)
Chris@82 43 let set_color c n = (n.color <- c)
Chris@82 44 let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)
Chris@82 45
Chris@82 46 let infinity = 100000
Chris@82 47
Chris@82 48 let cc dag inputs =
Chris@82 49 begin
Chris@82 50 Dag.for_all dag (fun node ->
Chris@82 51 node.label <- infinity);
Chris@82 52
Chris@82 53 (match inputs with
Chris@82 54 a :: _ -> bfs dag a 0
Chris@82 55 | _ -> failwith "connected");
Chris@82 56
Chris@82 57 return
Chris@82 58 ((List.map to_assignment (List.filter (fun n -> n.label < infinity)
Chris@82 59 (Dag.to_list dag))),
Chris@82 60 (List.map to_assignment (List.filter (fun n -> n.label == infinity)
Chris@82 61 (Dag.to_list dag))))
Chris@82 62 end
Chris@82 63
Chris@82 64 let rec connected_components alist =
Chris@82 65 let dag = makedag alist in
Chris@82 66 let inputs =
Chris@82 67 List.filter (fun node -> Util.null node.predecessors)
Chris@82 68 (Dag.to_list dag) in
Chris@82 69 match cc dag inputs with
Chris@82 70 (a, []) -> [a]
Chris@82 71 | (a, b) -> a :: connected_components b
Chris@82 72
Chris@82 73 let single_load node =
Chris@82 74 match (node.input_variables, node.predecessors) with
Chris@82 75 ([x], []) ->
Chris@82 76 Variable.is_constant x ||
Chris@82 77 (!Magic.locations_are_special && Variable.is_locative x)
Chris@82 78 | _ -> false
Chris@82 79
Chris@82 80 let loads_locative node =
Chris@82 81 match (node.input_variables, node.predecessors) with
Chris@82 82 | ([x], []) -> Variable.is_locative x
Chris@82 83 | _ -> false
Chris@82 84
Chris@82 85 let partition alist =
Chris@82 86 let dag = makedag alist in
Chris@82 87 let dag' = Dag.to_list dag in
Chris@82 88 let inputs =
Chris@82 89 List.filter (fun node -> Util.null node.predecessors) dag'
Chris@82 90 and outputs =
Chris@82 91 List.filter (fun node -> Util.null node.successors) dag'
Chris@82 92 and special_inputs = List.filter single_load dag' in
Chris@82 93 begin
Chris@82 94
Chris@82 95 let c = match !Magic.schedule_type with
Chris@82 96 | 1 -> RED; (* all nodes in the input partition *)
Chris@82 97 | -1 -> BLUE; (* all nodes in the output partition *)
Chris@82 98 | _ -> BLACK; (* node color determined by bisection algorithm *)
Chris@82 99 in Dag.for_all dag (fun node -> node.color <- c);
Chris@82 100
Chris@82 101 Util.for_list inputs (set_color RED);
Chris@82 102
Chris@82 103 (*
Chris@82 104 The special inputs are those input nodes that load a single
Chris@82 105 location or twiddle factor. Special inputs can end up either
Chris@82 106 in the blue or in the red part. These inputs are special
Chris@82 107 because they inherit a color from their neighbors: If a red
Chris@82 108 node needs a special input, the special input becomes red, but
Chris@82 109 if all successors of a special input are blue, the special
Chris@82 110 input becomes blue. Outputs are always blue, whether they be
Chris@82 111 special or not.
Chris@82 112
Chris@82 113 Because of the processing of special inputs, however, the final
Chris@82 114 partition might end up being composed only of blue nodes (which
Chris@82 115 is incorrect). In this case we manually reset all inputs
Chris@82 116 (whether special or not) to be red.
Chris@82 117 *)
Chris@82 118
Chris@82 119 Util.for_list special_inputs (set_color YELLOW);
Chris@82 120
Chris@82 121 Util.for_list outputs (set_color BLUE);
Chris@82 122
Chris@82 123 let rec loopi donep =
Chris@82 124 match (List.filter
Chris@82 125 (fun node -> (has_color BLACK node) &&
Chris@82 126 List.for_all (has_either_color RED YELLOW) node.predecessors)
Chris@82 127 dag') with
Chris@82 128 [] -> if (donep) then () else loopo true
Chris@82 129 | i ->
Chris@82 130 begin
Chris@82 131 Util.for_list i (fun node ->
Chris@82 132 begin
Chris@82 133 set_color RED node;
Chris@82 134 Util.for_list node.predecessors (set_color RED);
Chris@82 135 end);
Chris@82 136 loopo false;
Chris@82 137 end
Chris@82 138
Chris@82 139 and loopo donep =
Chris@82 140 match (List.filter
Chris@82 141 (fun node -> (has_either_color BLACK YELLOW node) &&
Chris@82 142 List.for_all (has_color BLUE) node.successors)
Chris@82 143 dag') with
Chris@82 144 [] -> if (donep) then () else loopi true
Chris@82 145 | o ->
Chris@82 146 begin
Chris@82 147 Util.for_list o (set_color BLUE);
Chris@82 148 loopi false;
Chris@82 149 end
Chris@82 150
Chris@82 151 in loopi false;
Chris@82 152
Chris@82 153 (* fix the partition if it is incorrect *)
Chris@82 154 if not (List.exists (has_color RED) dag') then
Chris@82 155 Util.for_list inputs (set_color RED);
Chris@82 156
Chris@82 157 return
Chris@82 158 ((List.map to_assignment (List.filter (has_color RED) dag')),
Chris@82 159 (List.map to_assignment (List.filter (has_color BLUE) dag')))
Chris@82 160 end
Chris@82 161
Chris@82 162 type schedule =
Chris@82 163 Done
Chris@82 164 | Instr of Expr.assignment
Chris@82 165 | Seq of (schedule * schedule)
Chris@82 166 | Par of schedule list
Chris@82 167
Chris@82 168
Chris@82 169
Chris@82 170 (* produce a sequential schedule determined by the user *)
Chris@82 171 let rec sequentially = function
Chris@82 172 [] -> Done
Chris@82 173 | a :: b -> Seq (Instr a, sequentially b)
Chris@82 174
Chris@82 175 let schedule =
Chris@82 176 let rec schedule_alist = function
Chris@82 177 | [] -> Done
Chris@82 178 | [a] -> Instr a
Chris@82 179 | alist -> match connected_components alist with
Chris@82 180 | ([a]) -> schedule_connected a
Chris@82 181 | l -> Par (List.map schedule_alist l)
Chris@82 182
Chris@82 183 and schedule_connected alist =
Chris@82 184 match partition alist with
Chris@82 185 | (a, b) -> Seq (schedule_alist a, schedule_alist b)
Chris@82 186
Chris@82 187 in fun x ->
Chris@82 188 let () = Util.info "begin schedule" in
Chris@82 189 let res = schedule_alist x in
Chris@82 190 let () = Util.info "end schedule" in
Chris@82 191 res
Chris@82 192
Chris@82 193
Chris@82 194 (* partition a dag into two parts:
Chris@82 195
Chris@82 196 1) the set of loads from locatives and their successors,
Chris@82 197 2) all other nodes
Chris@82 198
Chris@82 199 This step separates the ``body'' of the dag, which computes the
Chris@82 200 actual fft, from the ``precomputations'' part, which computes e.g.
Chris@82 201 twiddle factors.
Chris@82 202 *)
Chris@82 203 let partition_precomputations alist =
Chris@82 204 let dag = makedag alist in
Chris@82 205 let dag' = Dag.to_list dag in
Chris@82 206 let loads = List.filter loads_locative dag' in
Chris@82 207 begin
Chris@82 208
Chris@82 209 Dag.for_all dag (set_color BLUE);
Chris@82 210 Util.for_list loads (set_color RED);
Chris@82 211
Chris@82 212 let rec loop () =
Chris@82 213 match (List.filter
Chris@82 214 (fun node -> (has_color RED node) &&
Chris@82 215 List.exists (has_color BLUE) node.successors)
Chris@82 216 dag') with
Chris@82 217 [] -> ()
Chris@82 218 | i ->
Chris@82 219 begin
Chris@82 220 Util.for_list i
Chris@82 221 (fun node ->
Chris@82 222 Util.for_list node.successors (set_color RED));
Chris@82 223 loop ()
Chris@82 224 end
Chris@82 225
Chris@82 226 in loop ();
Chris@82 227
Chris@82 228 return
Chris@82 229 ((List.map to_assignment (List.filter (has_color BLUE) dag')),
Chris@82 230 (List.map to_assignment (List.filter (has_color RED) dag')))
Chris@82 231 end
Chris@82 232
Chris@82 233 let isolate_precomputations_and_schedule alist =
Chris@82 234 let (a, b) = partition_precomputations alist in
Chris@82 235 Seq (schedule a, schedule b)
Chris@82 236