| Chris@82 | 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> | 
| Chris@82 | 2 <html> | 
| Chris@82 | 3 <!-- This manual is for FFTW | 
| Chris@82 | 4 (version 3.3.8, 24 May 2018). | 
| Chris@82 | 5 | 
| Chris@82 | 6 Copyright (C) 2003 Matteo Frigo. | 
| Chris@82 | 7 | 
| Chris@82 | 8 Copyright (C) 2003 Massachusetts Institute of Technology. | 
| Chris@82 | 9 | 
| Chris@82 | 10 Permission is granted to make and distribute verbatim copies of this | 
| Chris@82 | 11 manual provided the copyright notice and this permission notice are | 
| Chris@82 | 12 preserved on all copies. | 
| Chris@82 | 13 | 
| Chris@82 | 14 Permission is granted to copy and distribute modified versions of this | 
| Chris@82 | 15 manual under the conditions for verbatim copying, provided that the | 
| Chris@82 | 16 entire resulting derived work is distributed under the terms of a | 
| Chris@82 | 17 permission notice identical to this one. | 
| Chris@82 | 18 | 
| Chris@82 | 19 Permission is granted to copy and distribute translations of this manual | 
| Chris@82 | 20 into another language, under the above conditions for modified versions, | 
| Chris@82 | 21 except that this permission notice may be stated in a translation | 
| Chris@82 | 22 approved by the Free Software Foundation. --> | 
| Chris@82 | 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> | 
| Chris@82 | 24 <head> | 
| Chris@82 | 25 <title>FFTW 3.3.8: One-Dimensional DFTs of Real Data</title> | 
| Chris@82 | 26 | 
| Chris@82 | 27 <meta name="description" content="FFTW 3.3.8: One-Dimensional DFTs of Real Data"> | 
| Chris@82 | 28 <meta name="keywords" content="FFTW 3.3.8: One-Dimensional DFTs of Real Data"> | 
| Chris@82 | 29 <meta name="resource-type" content="document"> | 
| Chris@82 | 30 <meta name="distribution" content="global"> | 
| Chris@82 | 31 <meta name="Generator" content="makeinfo"> | 
| Chris@82 | 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
| Chris@82 | 33 <link href="index.html#Top" rel="start" title="Top"> | 
| Chris@82 | 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> | 
| Chris@82 | 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> | 
| Chris@82 | 36 <link href="Tutorial.html#Tutorial" rel="up" title="Tutorial"> | 
| Chris@82 | 37 <link href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data" rel="next" title="Multi-Dimensional DFTs of Real Data"> | 
| Chris@82 | 38 <link href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" rel="prev" title="Complex Multi-Dimensional DFTs"> | 
| Chris@82 | 39 <style type="text/css"> | 
| Chris@82 | 40 <!-- | 
| Chris@82 | 41 a.summary-letter {text-decoration: none} | 
| Chris@82 | 42 blockquote.indentedblock {margin-right: 0em} | 
| Chris@82 | 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} | 
| Chris@82 | 44 blockquote.smallquotation {font-size: smaller} | 
| Chris@82 | 45 div.display {margin-left: 3.2em} | 
| Chris@82 | 46 div.example {margin-left: 3.2em} | 
| Chris@82 | 47 div.lisp {margin-left: 3.2em} | 
| Chris@82 | 48 div.smalldisplay {margin-left: 3.2em} | 
| Chris@82 | 49 div.smallexample {margin-left: 3.2em} | 
| Chris@82 | 50 div.smalllisp {margin-left: 3.2em} | 
| Chris@82 | 51 kbd {font-style: oblique} | 
| Chris@82 | 52 pre.display {font-family: inherit} | 
| Chris@82 | 53 pre.format {font-family: inherit} | 
| Chris@82 | 54 pre.menu-comment {font-family: serif} | 
| Chris@82 | 55 pre.menu-preformatted {font-family: serif} | 
| Chris@82 | 56 pre.smalldisplay {font-family: inherit; font-size: smaller} | 
| Chris@82 | 57 pre.smallexample {font-size: smaller} | 
| Chris@82 | 58 pre.smallformat {font-family: inherit; font-size: smaller} | 
| Chris@82 | 59 pre.smalllisp {font-size: smaller} | 
| Chris@82 | 60 span.nolinebreak {white-space: nowrap} | 
| Chris@82 | 61 span.roman {font-family: initial; font-weight: normal} | 
| Chris@82 | 62 span.sansserif {font-family: sans-serif; font-weight: normal} | 
| Chris@82 | 63 ul.no-bullet {list-style: none} | 
| Chris@82 | 64 --> | 
| Chris@82 | 65 </style> | 
| Chris@82 | 66 | 
| Chris@82 | 67 | 
| Chris@82 | 68 </head> | 
| Chris@82 | 69 | 
| Chris@82 | 70 <body lang="en"> | 
| Chris@82 | 71 <a name="One_002dDimensional-DFTs-of-Real-Data"></a> | 
| Chris@82 | 72 <div class="header"> | 
| Chris@82 | 73 <p> | 
| Chris@82 | 74 Next: <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data" accesskey="n" rel="next">Multi-Dimensional DFTs of Real Data</a>, Previous: <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" accesskey="p" rel="prev">Complex Multi-Dimensional DFTs</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | 
| Chris@82 | 75 </div> | 
| Chris@82 | 76 <hr> | 
| Chris@82 | 77 <a name="One_002dDimensional-DFTs-of-Real-Data-1"></a> | 
| Chris@82 | 78 <h3 class="section">2.3 One-Dimensional DFTs of Real Data</h3> | 
| Chris@82 | 79 | 
| Chris@82 | 80 <p>In many practical applications, the input data <code>in[i]</code> are purely | 
| Chris@82 | 81 real numbers, in which case the DFT output satisfies the “Hermitian” | 
| Chris@82 | 82 <a name="index-Hermitian"></a> | 
| Chris@82 | 83 redundancy: <code>out[i]</code> is the conjugate of <code>out[n-i]</code>.  It is | 
| Chris@82 | 84 possible to take advantage of these circumstances in order to achieve | 
| Chris@82 | 85 roughly a factor of two improvement in both speed and memory usage. | 
| Chris@82 | 86 </p> | 
| Chris@82 | 87 <p>In exchange for these speed and space advantages, the user sacrifices | 
| Chris@82 | 88 some of the simplicity of FFTW’s complex transforms. First of all, the | 
| Chris@82 | 89 input and output arrays are of <em>different sizes and types</em>: the | 
| Chris@82 | 90 input is <code>n</code> real numbers, while the output is <code>n/2+1</code> | 
| Chris@82 | 91 complex numbers (the non-redundant outputs); this also requires slight | 
| Chris@82 | 92 “padding” of the input array for | 
| Chris@82 | 93 <a name="index-padding"></a> | 
| Chris@82 | 94 in-place transforms.  Second, the inverse transform (complex to real) | 
| Chris@82 | 95 has the side-effect of <em>overwriting its input array</em>, by default. | 
| Chris@82 | 96 Neither of these inconveniences should pose a serious problem for | 
| Chris@82 | 97 users, but it is important to be aware of them. | 
| Chris@82 | 98 </p> | 
| Chris@82 | 99 <p>The routines to perform real-data transforms are almost the same as | 
| Chris@82 | 100 those for complex transforms: you allocate arrays of <code>double</code> | 
| Chris@82 | 101 and/or <code>fftw_complex</code> (preferably using <code>fftw_malloc</code> or | 
| Chris@82 | 102 <code>fftw_alloc_complex</code>), create an <code>fftw_plan</code>, execute it as | 
| Chris@82 | 103 many times as you want with <code>fftw_execute(plan)</code>, and clean up | 
| Chris@82 | 104 with <code>fftw_destroy_plan(plan)</code> (and <code>fftw_free</code>).  The only | 
| Chris@82 | 105 differences are that the input (or output) is of type <code>double</code> | 
| Chris@82 | 106 and there are new routines to create the plan.  In one dimension: | 
| Chris@82 | 107 </p> | 
| Chris@82 | 108 <div class="example"> | 
| Chris@82 | 109 <pre class="example">fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out, | 
| Chris@82 | 110                                unsigned flags); | 
| Chris@82 | 111 fftw_plan fftw_plan_dft_c2r_1d(int n, fftw_complex *in, double *out, | 
| Chris@82 | 112                                unsigned flags); | 
| Chris@82 | 113 </pre></div> | 
| Chris@82 | 114 <a name="index-fftw_005fplan_005fdft_005fr2c_005f1d"></a> | 
| Chris@82 | 115 <a name="index-fftw_005fplan_005fdft_005fc2r_005f1d"></a> | 
| Chris@82 | 116 | 
| Chris@82 | 117 <p>for the real input to complex-Hermitian output (<em>r2c</em>) and | 
| Chris@82 | 118 complex-Hermitian input to real output (<em>c2r</em>) transforms. | 
| Chris@82 | 119 <a name="index-r2c"></a> | 
| Chris@82 | 120 <a name="index-c2r"></a> | 
| Chris@82 | 121 Unlike the complex DFT planner, there is no <code>sign</code> argument. | 
| Chris@82 | 122 Instead, r2c DFTs are always <code>FFTW_FORWARD</code> and c2r DFTs are | 
| Chris@82 | 123 always <code>FFTW_BACKWARD</code>. | 
| Chris@82 | 124 <a name="index-FFTW_005fFORWARD-1"></a> | 
| Chris@82 | 125 <a name="index-FFTW_005fBACKWARD-1"></a> | 
| Chris@82 | 126 (For single/long-double precision | 
| Chris@82 | 127 <code>fftwf</code> and <code>fftwl</code>, <code>double</code> should be replaced by | 
| Chris@82 | 128 <code>float</code> and <code>long double</code>, respectively.) | 
| Chris@82 | 129 <a name="index-precision-1"></a> | 
| Chris@82 | 130 </p> | 
| Chris@82 | 131 | 
| Chris@82 | 132 <p>Here, <code>n</code> is the “logical” size of the DFT, not necessarily the | 
| Chris@82 | 133 physical size of the array.  In particular, the real (<code>double</code>) | 
| Chris@82 | 134 array has <code>n</code> elements, while the complex (<code>fftw_complex</code>) | 
| Chris@82 | 135 array has <code>n/2+1</code> elements (where the division is rounded down). | 
| Chris@82 | 136 For an in-place transform, | 
| Chris@82 | 137 <a name="index-in_002dplace-1"></a> | 
| Chris@82 | 138 <code>in</code> and <code>out</code> are aliased to the same array, which must be | 
| Chris@82 | 139 big enough to hold both; so, the real array would actually have | 
| Chris@82 | 140 <code>2*(n/2+1)</code> elements, where the elements beyond the first | 
| Chris@82 | 141 <code>n</code> are unused padding.  (Note that this is very different from | 
| Chris@82 | 142 the concept of “zero-padding” a transform to a larger length, which | 
| Chris@82 | 143 changes the logical size of the DFT by actually adding new input | 
| Chris@82 | 144 data.)  The <em>k</em>th element of the complex array is exactly the | 
| Chris@82 | 145 same as the <em>k</em>th element of the corresponding complex DFT.  All | 
| Chris@82 | 146 positive <code>n</code> are supported; products of small factors are most | 
| Chris@82 | 147 efficient, but an <i>O</i>(<i>n</i> log <i>n</i>) | 
| Chris@82 | 148  algorithm is used even for prime sizes. | 
| Chris@82 | 149 </p> | 
| Chris@82 | 150 <p>As noted above, the c2r transform destroys its input array even for | 
| Chris@82 | 151 out-of-place transforms.  This can be prevented, if necessary, by | 
| Chris@82 | 152 including <code>FFTW_PRESERVE_INPUT</code> in the <code>flags</code>, with | 
| Chris@82 | 153 unfortunately some sacrifice in performance. | 
| Chris@82 | 154 <a name="index-flags-1"></a> | 
| Chris@82 | 155 <a name="index-FFTW_005fPRESERVE_005fINPUT"></a> | 
| Chris@82 | 156 This flag is also not currently supported for multi-dimensional real | 
| Chris@82 | 157 DFTs (next section). | 
| Chris@82 | 158 </p> | 
| Chris@82 | 159 <p>Readers familiar with DFTs of real data will recall that the 0th (the | 
| Chris@82 | 160 “DC”) and <code>n/2</code>-th (the “Nyquist” frequency, when <code>n</code> is | 
| Chris@82 | 161 even) elements of the complex output are purely real.  Some | 
| Chris@82 | 162 implementations therefore store the Nyquist element where the DC | 
| Chris@82 | 163 imaginary part would go, in order to make the input and output arrays | 
| Chris@82 | 164 the same size.  Such packing, however, does not generalize well to | 
| Chris@82 | 165 multi-dimensional transforms, and the space savings are miniscule in | 
| Chris@82 | 166 any case; FFTW does not support it. | 
| Chris@82 | 167 </p> | 
| Chris@82 | 168 <p>An alternative interface for one-dimensional r2c and c2r DFTs can be | 
| Chris@82 | 169 found in the ‘<samp>r2r</samp>’ interface (see <a href="The-Halfcomplex_002dformat-DFT.html#The-Halfcomplex_002dformat-DFT">The Halfcomplex-format DFT</a>), with “halfcomplex”-format output that <em>is</em> the same size | 
| Chris@82 | 170 (and type) as the input array. | 
| Chris@82 | 171 <a name="index-halfcomplex-format"></a> | 
| Chris@82 | 172 That interface, although it is not very useful for multi-dimensional | 
| Chris@82 | 173 transforms, may sometimes yield better performance. | 
| Chris@82 | 174 </p> | 
| Chris@82 | 175 <hr> | 
| Chris@82 | 176 <div class="header"> | 
| Chris@82 | 177 <p> | 
| Chris@82 | 178 Next: <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data" accesskey="n" rel="next">Multi-Dimensional DFTs of Real Data</a>, Previous: <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" accesskey="p" rel="prev">Complex Multi-Dimensional DFTs</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | 
| Chris@82 | 179 </div> | 
| Chris@82 | 180 | 
| Chris@82 | 181 | 
| Chris@82 | 182 | 
| Chris@82 | 183 </body> | 
| Chris@82 | 184 </html> |