Chris@82
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
Chris@82
|
2 <html>
|
Chris@82
|
3 <!-- This manual is for FFTW
|
Chris@82
|
4 (version 3.3.8, 24 May 2018).
|
Chris@82
|
5
|
Chris@82
|
6 Copyright (C) 2003 Matteo Frigo.
|
Chris@82
|
7
|
Chris@82
|
8 Copyright (C) 2003 Massachusetts Institute of Technology.
|
Chris@82
|
9
|
Chris@82
|
10 Permission is granted to make and distribute verbatim copies of this
|
Chris@82
|
11 manual provided the copyright notice and this permission notice are
|
Chris@82
|
12 preserved on all copies.
|
Chris@82
|
13
|
Chris@82
|
14 Permission is granted to copy and distribute modified versions of this
|
Chris@82
|
15 manual under the conditions for verbatim copying, provided that the
|
Chris@82
|
16 entire resulting derived work is distributed under the terms of a
|
Chris@82
|
17 permission notice identical to this one.
|
Chris@82
|
18
|
Chris@82
|
19 Permission is granted to copy and distribute translations of this manual
|
Chris@82
|
20 into another language, under the above conditions for modified versions,
|
Chris@82
|
21 except that this permission notice may be stated in a translation
|
Chris@82
|
22 approved by the Free Software Foundation. -->
|
Chris@82
|
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
|
Chris@82
|
24 <head>
|
Chris@82
|
25 <title>FFTW 3.3.8: Multi-Dimensional DFTs of Real Data</title>
|
Chris@82
|
26
|
Chris@82
|
27 <meta name="description" content="FFTW 3.3.8: Multi-Dimensional DFTs of Real Data">
|
Chris@82
|
28 <meta name="keywords" content="FFTW 3.3.8: Multi-Dimensional DFTs of Real Data">
|
Chris@82
|
29 <meta name="resource-type" content="document">
|
Chris@82
|
30 <meta name="distribution" content="global">
|
Chris@82
|
31 <meta name="Generator" content="makeinfo">
|
Chris@82
|
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
Chris@82
|
33 <link href="index.html#Top" rel="start" title="Top">
|
Chris@82
|
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
Chris@82
|
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
|
Chris@82
|
36 <link href="Tutorial.html#Tutorial" rel="up" title="Tutorial">
|
Chris@82
|
37 <link href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" rel="next" title="More DFTs of Real Data">
|
Chris@82
|
38 <link href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" rel="prev" title="One-Dimensional DFTs of Real Data">
|
Chris@82
|
39 <style type="text/css">
|
Chris@82
|
40 <!--
|
Chris@82
|
41 a.summary-letter {text-decoration: none}
|
Chris@82
|
42 blockquote.indentedblock {margin-right: 0em}
|
Chris@82
|
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
|
Chris@82
|
44 blockquote.smallquotation {font-size: smaller}
|
Chris@82
|
45 div.display {margin-left: 3.2em}
|
Chris@82
|
46 div.example {margin-left: 3.2em}
|
Chris@82
|
47 div.lisp {margin-left: 3.2em}
|
Chris@82
|
48 div.smalldisplay {margin-left: 3.2em}
|
Chris@82
|
49 div.smallexample {margin-left: 3.2em}
|
Chris@82
|
50 div.smalllisp {margin-left: 3.2em}
|
Chris@82
|
51 kbd {font-style: oblique}
|
Chris@82
|
52 pre.display {font-family: inherit}
|
Chris@82
|
53 pre.format {font-family: inherit}
|
Chris@82
|
54 pre.menu-comment {font-family: serif}
|
Chris@82
|
55 pre.menu-preformatted {font-family: serif}
|
Chris@82
|
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
|
Chris@82
|
57 pre.smallexample {font-size: smaller}
|
Chris@82
|
58 pre.smallformat {font-family: inherit; font-size: smaller}
|
Chris@82
|
59 pre.smalllisp {font-size: smaller}
|
Chris@82
|
60 span.nolinebreak {white-space: nowrap}
|
Chris@82
|
61 span.roman {font-family: initial; font-weight: normal}
|
Chris@82
|
62 span.sansserif {font-family: sans-serif; font-weight: normal}
|
Chris@82
|
63 ul.no-bullet {list-style: none}
|
Chris@82
|
64 -->
|
Chris@82
|
65 </style>
|
Chris@82
|
66
|
Chris@82
|
67
|
Chris@82
|
68 </head>
|
Chris@82
|
69
|
Chris@82
|
70 <body lang="en">
|
Chris@82
|
71 <a name="Multi_002dDimensional-DFTs-of-Real-Data"></a>
|
Chris@82
|
72 <div class="header">
|
Chris@82
|
73 <p>
|
Chris@82
|
74 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
Chris@82
|
75 </div>
|
Chris@82
|
76 <hr>
|
Chris@82
|
77 <a name="Multi_002dDimensional-DFTs-of-Real-Data-1"></a>
|
Chris@82
|
78 <h3 class="section">2.4 Multi-Dimensional DFTs of Real Data</h3>
|
Chris@82
|
79
|
Chris@82
|
80 <p>Multi-dimensional DFTs of real data use the following planner routines:
|
Chris@82
|
81 </p>
|
Chris@82
|
82 <div class="example">
|
Chris@82
|
83 <pre class="example">fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
|
Chris@82
|
84 double *in, fftw_complex *out,
|
Chris@82
|
85 unsigned flags);
|
Chris@82
|
86 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
|
Chris@82
|
87 double *in, fftw_complex *out,
|
Chris@82
|
88 unsigned flags);
|
Chris@82
|
89 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
|
Chris@82
|
90 double *in, fftw_complex *out,
|
Chris@82
|
91 unsigned flags);
|
Chris@82
|
92 </pre></div>
|
Chris@82
|
93 <a name="index-fftw_005fplan_005fdft_005fr2c_005f2d"></a>
|
Chris@82
|
94 <a name="index-fftw_005fplan_005fdft_005fr2c_005f3d"></a>
|
Chris@82
|
95 <a name="index-fftw_005fplan_005fdft_005fr2c"></a>
|
Chris@82
|
96
|
Chris@82
|
97 <p>as well as the corresponding <code>c2r</code> routines with the input/output
|
Chris@82
|
98 types swapped. These routines work similarly to their complex
|
Chris@82
|
99 analogues, except for the fact that here the complex output array is cut
|
Chris@82
|
100 roughly in half and the real array requires padding for in-place
|
Chris@82
|
101 transforms (as in 1d, above).
|
Chris@82
|
102 </p>
|
Chris@82
|
103 <p>As before, <code>n</code> is the logical size of the array, and the
|
Chris@82
|
104 consequences of this on the the format of the complex arrays deserve
|
Chris@82
|
105 careful attention.
|
Chris@82
|
106 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format"></a>
|
Chris@82
|
107 Suppose that the real data has dimensions n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub>
|
Chris@82
|
108 (in row-major order).
|
Chris@82
|
109 Then, after an r2c transform, the output is an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1)
|
Chris@82
|
110 array of
|
Chris@82
|
111 <code>fftw_complex</code> values in row-major order, corresponding to slightly
|
Chris@82
|
112 over half of the output of the corresponding complex DFT. (The division
|
Chris@82
|
113 is rounded down.) The ordering of the data is otherwise exactly the
|
Chris@82
|
114 same as in the complex-DFT case.
|
Chris@82
|
115 </p>
|
Chris@82
|
116 <p>For out-of-place transforms, this is the end of the story: the real
|
Chris@82
|
117 data is stored as a row-major array of size n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub>
|
Chris@82
|
118 and the complex
|
Chris@82
|
119 data is stored as a row-major array of size n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1)
|
Chris@82
|
120 .
|
Chris@82
|
121 </p>
|
Chris@82
|
122 <p>For in-place transforms, however, extra padding of the real-data array
|
Chris@82
|
123 is necessary because the complex array is larger than the real array,
|
Chris@82
|
124 and the two arrays share the same memory locations. Thus, for
|
Chris@82
|
125 in-place transforms, the final dimension of the real-data array must
|
Chris@82
|
126 be padded with extra values to accommodate the size of the complex
|
Chris@82
|
127 data—two values if the last dimension is even and one if it is odd.
|
Chris@82
|
128 <a name="index-padding-1"></a>
|
Chris@82
|
129 That is, the last dimension of the real data must physically contain
|
Chris@82
|
130 2 * (n<sub>d-1</sub>/2+1)
|
Chris@82
|
131 <code>double</code> values (exactly enough to hold the complex data).
|
Chris@82
|
132 This physical array size does not, however, change the <em>logical</em>
|
Chris@82
|
133 array size—only
|
Chris@82
|
134 n<sub>d-1</sub>
|
Chris@82
|
135 values are actually stored in the last dimension, and
|
Chris@82
|
136 n<sub>d-1</sub>
|
Chris@82
|
137 is the last dimension passed to the plan-creation routine.
|
Chris@82
|
138 </p>
|
Chris@82
|
139 <p>For example, consider the transform of a two-dimensional real array of
|
Chris@82
|
140 size <code>n0</code> by <code>n1</code>. The output of the r2c transform is a
|
Chris@82
|
141 two-dimensional complex array of size <code>n0</code> by <code>n1/2+1</code>, where
|
Chris@82
|
142 the <code>y</code> dimension has been cut nearly in half because of
|
Chris@82
|
143 redundancies in the output. Because <code>fftw_complex</code> is twice the
|
Chris@82
|
144 size of <code>double</code>, the output array is slightly bigger than the
|
Chris@82
|
145 input array. Thus, if we want to compute the transform in place, we
|
Chris@82
|
146 must <em>pad</em> the input array so that it is of size <code>n0</code> by
|
Chris@82
|
147 <code>2*(n1/2+1)</code>. If <code>n1</code> is even, then there are two padding
|
Chris@82
|
148 elements at the end of each row (which need not be initialized, as they
|
Chris@82
|
149 are only used for output).
|
Chris@82
|
150 </p>
|
Chris@82
|
151 <p>The following illustration depicts the input and output arrays just
|
Chris@82
|
152 described, for both the out-of-place and in-place transforms (with the
|
Chris@82
|
153 arrows indicating consecutive memory locations):
|
Chris@82
|
154 <img src="rfftwnd-for-html.png" alt="rfftwnd-for-html">
|
Chris@82
|
155 </p>
|
Chris@82
|
156 <p>These transforms are unnormalized, so an r2c followed by a c2r
|
Chris@82
|
157 transform (or vice versa) will result in the original data scaled by
|
Chris@82
|
158 the number of real data elements—that is, the product of the
|
Chris@82
|
159 (logical) dimensions of the real data.
|
Chris@82
|
160 <a name="index-normalization-1"></a>
|
Chris@82
|
161 </p>
|
Chris@82
|
162
|
Chris@82
|
163 <p>(Because the last dimension is treated specially, if it is equal to
|
Chris@82
|
164 <code>1</code> the transform is <em>not</em> equivalent to a lower-dimensional
|
Chris@82
|
165 r2c/c2r transform. In that case, the last complex dimension also has
|
Chris@82
|
166 size <code>1</code> (<code>=1/2+1</code>), and no advantage is gained over the
|
Chris@82
|
167 complex transforms.)
|
Chris@82
|
168 </p>
|
Chris@82
|
169 <hr>
|
Chris@82
|
170 <div class="header">
|
Chris@82
|
171 <p>
|
Chris@82
|
172 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
Chris@82
|
173 </div>
|
Chris@82
|
174
|
Chris@82
|
175
|
Chris@82
|
176
|
Chris@82
|
177 </body>
|
Chris@82
|
178 </html>
|