annotate src/fftw-3.3.8/dft/simd/common/t1fuv_7.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:05:25 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fuv_7 -include dft/simd/t1fu.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 36 FP additions, 36 FP multiplications,
Chris@82 32 * (or, 15 additions, 15 multiplications, 21 fused multiply/add),
Chris@82 33 * 30 stack variables, 6 constants, and 14 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/simd/t1fu.h"
Chris@82 36
Chris@82 37 static void t1fuv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
Chris@82 40 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@82 41 DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
Chris@82 42 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@82 43 DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
Chris@82 44 DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
Chris@82 45 {
Chris@82 46 INT m;
Chris@82 47 R *x;
Chris@82 48 x = ri;
Chris@82 49 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
Chris@82 50 V T1, Tk, Tm, Tl, T6, Tg, Tb, Th, Tu, Tp;
Chris@82 51 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@82 52 {
Chris@82 53 V T3, T5, Tf, Td, Ta, T8;
Chris@82 54 {
Chris@82 55 V T2, T4, Te, Tc, T9, T7;
Chris@82 56 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@82 57 T3 = BYTWJ(&(W[0]), T2);
Chris@82 58 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@82 59 T5 = BYTWJ(&(W[TWVL * 10]), T4);
Chris@82 60 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@82 61 Tf = BYTWJ(&(W[TWVL * 6]), Te);
Chris@82 62 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@82 63 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@82 64 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@82 65 Ta = BYTWJ(&(W[TWVL * 8]), T9);
Chris@82 66 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@82 67 T8 = BYTWJ(&(W[TWVL * 2]), T7);
Chris@82 68 }
Chris@82 69 Tk = VSUB(T5, T3);
Chris@82 70 Tm = VSUB(Ta, T8);
Chris@82 71 Tl = VSUB(Tf, Td);
Chris@82 72 T6 = VADD(T3, T5);
Chris@82 73 Tg = VADD(Td, Tf);
Chris@82 74 Tb = VADD(T8, Ta);
Chris@82 75 Th = VFNMS(LDK(KP356895867), T6, Tg);
Chris@82 76 Tu = VFNMS(LDK(KP356895867), Tg, Tb);
Chris@82 77 Tp = VFNMS(LDK(KP356895867), Tb, T6);
Chris@82 78 }
Chris@82 79 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
Chris@82 80 {
Chris@82 81 V Tw, Ty, Tv, Tx;
Chris@82 82 Tv = VFNMS(LDK(KP692021471), Tu, T6);
Chris@82 83 Tw = VFNMS(LDK(KP900968867), Tv, T1);
Chris@82 84 Tx = VFNMS(LDK(KP554958132), Tk, Tm);
Chris@82 85 Ty = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tx, Tl));
Chris@82 86 ST(&(x[WS(rs, 4)]), VFNMSI(Ty, Tw), ms, &(x[0]));
Chris@82 87 ST(&(x[WS(rs, 3)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)]));
Chris@82 88 }
Chris@82 89 {
Chris@82 90 V Tj, To, Ti, Tn;
Chris@82 91 Ti = VFNMS(LDK(KP692021471), Th, Tb);
Chris@82 92 Tj = VFNMS(LDK(KP900968867), Ti, T1);
Chris@82 93 Tn = VFMA(LDK(KP554958132), Tm, Tl);
Chris@82 94 To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk));
Chris@82 95 ST(&(x[WS(rs, 5)]), VFNMSI(To, Tj), ms, &(x[WS(rs, 1)]));
Chris@82 96 ST(&(x[WS(rs, 2)]), VFMAI(To, Tj), ms, &(x[0]));
Chris@82 97 }
Chris@82 98 {
Chris@82 99 V Tr, Tt, Tq, Ts;
Chris@82 100 Tq = VFNMS(LDK(KP692021471), Tp, Tg);
Chris@82 101 Tr = VFNMS(LDK(KP900968867), Tq, T1);
Chris@82 102 Ts = VFMA(LDK(KP554958132), Tl, Tk);
Chris@82 103 Tt = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Ts, Tm));
Chris@82 104 ST(&(x[WS(rs, 6)]), VFNMSI(Tt, Tr), ms, &(x[0]));
Chris@82 105 ST(&(x[WS(rs, 1)]), VFMAI(Tt, Tr), ms, &(x[WS(rs, 1)]));
Chris@82 106 }
Chris@82 107 }
Chris@82 108 }
Chris@82 109 VLEAVE();
Chris@82 110 }
Chris@82 111
Chris@82 112 static const tw_instr twinstr[] = {
Chris@82 113 VTW(0, 1),
Chris@82 114 VTW(0, 2),
Chris@82 115 VTW(0, 3),
Chris@82 116 VTW(0, 4),
Chris@82 117 VTW(0, 5),
Chris@82 118 VTW(0, 6),
Chris@82 119 {TW_NEXT, VL, 0}
Chris@82 120 };
Chris@82 121
Chris@82 122 static const ct_desc desc = { 7, XSIMD_STRING("t1fuv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 };
Chris@82 123
Chris@82 124 void XSIMD(codelet_t1fuv_7) (planner *p) {
Chris@82 125 X(kdft_dit_register) (p, t1fuv_7, &desc);
Chris@82 126 }
Chris@82 127 #else
Chris@82 128
Chris@82 129 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fuv_7 -include dft/simd/t1fu.h */
Chris@82 130
Chris@82 131 /*
Chris@82 132 * This function contains 36 FP additions, 30 FP multiplications,
Chris@82 133 * (or, 24 additions, 18 multiplications, 12 fused multiply/add),
Chris@82 134 * 21 stack variables, 6 constants, and 14 memory accesses
Chris@82 135 */
Chris@82 136 #include "dft/simd/t1fu.h"
Chris@82 137
Chris@82 138 static void t1fuv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 139 {
Chris@82 140 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
Chris@82 141 DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
Chris@82 142 DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
Chris@82 143 DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
Chris@82 144 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
Chris@82 145 DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
Chris@82 146 {
Chris@82 147 INT m;
Chris@82 148 R *x;
Chris@82 149 x = ri;
Chris@82 150 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
Chris@82 151 V T1, Tg, Tj, T6, Ti, Tb, Tk, Tp, To;
Chris@82 152 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@82 153 {
Chris@82 154 V Td, Tf, Tc, Te;
Chris@82 155 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@82 156 Td = BYTWJ(&(W[TWVL * 4]), Tc);
Chris@82 157 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@82 158 Tf = BYTWJ(&(W[TWVL * 6]), Te);
Chris@82 159 Tg = VADD(Td, Tf);
Chris@82 160 Tj = VSUB(Tf, Td);
Chris@82 161 }
Chris@82 162 {
Chris@82 163 V T3, T5, T2, T4;
Chris@82 164 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@82 165 T3 = BYTWJ(&(W[0]), T2);
Chris@82 166 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@82 167 T5 = BYTWJ(&(W[TWVL * 10]), T4);
Chris@82 168 T6 = VADD(T3, T5);
Chris@82 169 Ti = VSUB(T5, T3);
Chris@82 170 }
Chris@82 171 {
Chris@82 172 V T8, Ta, T7, T9;
Chris@82 173 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@82 174 T8 = BYTWJ(&(W[TWVL * 2]), T7);
Chris@82 175 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@82 176 Ta = BYTWJ(&(W[TWVL * 8]), T9);
Chris@82 177 Tb = VADD(T8, Ta);
Chris@82 178 Tk = VSUB(Ta, T8);
Chris@82 179 }
Chris@82 180 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
Chris@82 181 Tp = VBYI(VFMA(LDK(KP433883739), Ti, VFNMS(LDK(KP781831482), Tk, VMUL(LDK(KP974927912), Tj))));
Chris@82 182 To = VFMA(LDK(KP623489801), Tb, VFNMS(LDK(KP222520933), Tg, VFNMS(LDK(KP900968867), T6, T1)));
Chris@82 183 ST(&(x[WS(rs, 4)]), VSUB(To, Tp), ms, &(x[0]));
Chris@82 184 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
Chris@82 185 {
Chris@82 186 V Tl, Th, Tn, Tm;
Chris@82 187 Tl = VBYI(VFNMS(LDK(KP781831482), Tj, VFNMS(LDK(KP433883739), Tk, VMUL(LDK(KP974927912), Ti))));
Chris@82 188 Th = VFMA(LDK(KP623489801), Tg, VFNMS(LDK(KP900968867), Tb, VFNMS(LDK(KP222520933), T6, T1)));
Chris@82 189 ST(&(x[WS(rs, 5)]), VSUB(Th, Tl), ms, &(x[WS(rs, 1)]));
Chris@82 190 ST(&(x[WS(rs, 2)]), VADD(Th, Tl), ms, &(x[0]));
Chris@82 191 Tn = VBYI(VFMA(LDK(KP781831482), Ti, VFMA(LDK(KP974927912), Tk, VMUL(LDK(KP433883739), Tj))));
Chris@82 192 Tm = VFMA(LDK(KP623489801), T6, VFNMS(LDK(KP900968867), Tg, VFNMS(LDK(KP222520933), Tb, T1)));
Chris@82 193 ST(&(x[WS(rs, 6)]), VSUB(Tm, Tn), ms, &(x[0]));
Chris@82 194 ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)]));
Chris@82 195 }
Chris@82 196 }
Chris@82 197 }
Chris@82 198 VLEAVE();
Chris@82 199 }
Chris@82 200
Chris@82 201 static const tw_instr twinstr[] = {
Chris@82 202 VTW(0, 1),
Chris@82 203 VTW(0, 2),
Chris@82 204 VTW(0, 3),
Chris@82 205 VTW(0, 4),
Chris@82 206 VTW(0, 5),
Chris@82 207 VTW(0, 6),
Chris@82 208 {TW_NEXT, VL, 0}
Chris@82 209 };
Chris@82 210
Chris@82 211 static const ct_desc desc = { 7, XSIMD_STRING("t1fuv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 };
Chris@82 212
Chris@82 213 void XSIMD(codelet_t1fuv_7) (planner *p) {
Chris@82 214 X(kdft_dit_register) (p, t1fuv_7, &desc);
Chris@82 215 }
Chris@82 216 #endif