annotate src/fftw-3.3.8/dft/simd/common/n2bv_6.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:05:11 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 6 -name n2bv_6 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 18 FP additions, 8 FP multiplications,
Chris@82 32 * (or, 12 additions, 2 multiplications, 6 fused multiply/add),
Chris@82 33 * 25 stack variables, 2 constants, and 15 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/simd/n2b.h"
Chris@82 36
Chris@82 37 static void n2bv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@82 38 {
Chris@82 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 41 {
Chris@82 42 INT i;
Chris@82 43 const R *xi;
Chris@82 44 R *xo;
Chris@82 45 xi = ii;
Chris@82 46 xo = io;
Chris@82 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
Chris@82 48 V T3, Td, T6, Te, T9, Tf, Ta, Tg, T1, T2, Tj, Tk;
Chris@82 49 T1 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@82 50 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@82 51 T3 = VSUB(T1, T2);
Chris@82 52 Td = VADD(T1, T2);
Chris@82 53 {
Chris@82 54 V T4, T5, T7, T8;
Chris@82 55 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@82 56 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@82 57 T6 = VSUB(T4, T5);
Chris@82 58 Te = VADD(T4, T5);
Chris@82 59 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@82 60 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@82 61 T9 = VSUB(T7, T8);
Chris@82 62 Tf = VADD(T7, T8);
Chris@82 63 }
Chris@82 64 Ta = VADD(T6, T9);
Chris@82 65 Tg = VADD(Te, Tf);
Chris@82 66 Tj = VADD(T3, Ta);
Chris@82 67 STM2(&(xo[6]), Tj, ovs, &(xo[2]));
Chris@82 68 Tk = VADD(Td, Tg);
Chris@82 69 STM2(&(xo[0]), Tk, ovs, &(xo[0]));
Chris@82 70 {
Chris@82 71 V Tm, Tb, Tc, Tl;
Chris@82 72 Tb = VFNMS(LDK(KP500000000), Ta, T3);
Chris@82 73 Tc = VMUL(LDK(KP866025403), VSUB(T6, T9));
Chris@82 74 Tl = VFMAI(Tc, Tb);
Chris@82 75 STM2(&(xo[2]), Tl, ovs, &(xo[2]));
Chris@82 76 STN2(&(xo[0]), Tk, Tl, ovs);
Chris@82 77 Tm = VFNMSI(Tc, Tb);
Chris@82 78 STM2(&(xo[10]), Tm, ovs, &(xo[2]));
Chris@82 79 {
Chris@82 80 V Th, Ti, Tn, To;
Chris@82 81 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@82 82 Ti = VMUL(LDK(KP866025403), VSUB(Te, Tf));
Chris@82 83 Tn = VFNMSI(Ti, Th);
Chris@82 84 STM2(&(xo[4]), Tn, ovs, &(xo[0]));
Chris@82 85 STN2(&(xo[4]), Tn, Tj, ovs);
Chris@82 86 To = VFMAI(Ti, Th);
Chris@82 87 STM2(&(xo[8]), To, ovs, &(xo[0]));
Chris@82 88 STN2(&(xo[8]), To, Tm, ovs);
Chris@82 89 }
Chris@82 90 }
Chris@82 91 }
Chris@82 92 }
Chris@82 93 VLEAVE();
Chris@82 94 }
Chris@82 95
Chris@82 96 static const kdft_desc desc = { 6, XSIMD_STRING("n2bv_6"), {12, 2, 6, 0}, &GENUS, 0, 2, 0, 0 };
Chris@82 97
Chris@82 98 void XSIMD(codelet_n2bv_6) (planner *p) {
Chris@82 99 X(kdft_register) (p, n2bv_6, &desc);
Chris@82 100 }
Chris@82 101
Chris@82 102 #else
Chris@82 103
Chris@82 104 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 6 -name n2bv_6 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
Chris@82 105
Chris@82 106 /*
Chris@82 107 * This function contains 18 FP additions, 4 FP multiplications,
Chris@82 108 * (or, 16 additions, 2 multiplications, 2 fused multiply/add),
Chris@82 109 * 25 stack variables, 2 constants, and 15 memory accesses
Chris@82 110 */
Chris@82 111 #include "dft/simd/n2b.h"
Chris@82 112
Chris@82 113 static void n2bv_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
Chris@82 114 {
Chris@82 115 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@82 116 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@82 117 {
Chris@82 118 INT i;
Chris@82 119 const R *xi;
Chris@82 120 R *xo;
Chris@82 121 xi = ii;
Chris@82 122 xo = io;
Chris@82 123 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) {
Chris@82 124 V Ta, Td, T3, Te, T6, Tf, Tb, Tg, T8, T9, Tj, Tk;
Chris@82 125 T8 = LD(&(xi[0]), ivs, &(xi[0]));
Chris@82 126 T9 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Chris@82 127 Ta = VSUB(T8, T9);
Chris@82 128 Td = VADD(T8, T9);
Chris@82 129 {
Chris@82 130 V T1, T2, T4, T5;
Chris@82 131 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Chris@82 132 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Chris@82 133 T3 = VSUB(T1, T2);
Chris@82 134 Te = VADD(T1, T2);
Chris@82 135 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Chris@82 136 T5 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Chris@82 137 T6 = VSUB(T4, T5);
Chris@82 138 Tf = VADD(T4, T5);
Chris@82 139 }
Chris@82 140 Tb = VADD(T3, T6);
Chris@82 141 Tg = VADD(Te, Tf);
Chris@82 142 Tj = VADD(Ta, Tb);
Chris@82 143 STM2(&(xo[6]), Tj, ovs, &(xo[2]));
Chris@82 144 Tk = VADD(Td, Tg);
Chris@82 145 STM2(&(xo[0]), Tk, ovs, &(xo[0]));
Chris@82 146 {
Chris@82 147 V Tm, T7, Tc, Tl;
Chris@82 148 T7 = VBYI(VMUL(LDK(KP866025403), VSUB(T3, T6)));
Chris@82 149 Tc = VFNMS(LDK(KP500000000), Tb, Ta);
Chris@82 150 Tl = VADD(T7, Tc);
Chris@82 151 STM2(&(xo[2]), Tl, ovs, &(xo[2]));
Chris@82 152 STN2(&(xo[0]), Tk, Tl, ovs);
Chris@82 153 Tm = VSUB(Tc, T7);
Chris@82 154 STM2(&(xo[10]), Tm, ovs, &(xo[2]));
Chris@82 155 {
Chris@82 156 V Th, Ti, Tn, To;
Chris@82 157 Th = VFNMS(LDK(KP500000000), Tg, Td);
Chris@82 158 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Te, Tf)));
Chris@82 159 Tn = VSUB(Th, Ti);
Chris@82 160 STM2(&(xo[4]), Tn, ovs, &(xo[0]));
Chris@82 161 STN2(&(xo[4]), Tn, Tj, ovs);
Chris@82 162 To = VADD(Ti, Th);
Chris@82 163 STM2(&(xo[8]), To, ovs, &(xo[0]));
Chris@82 164 STN2(&(xo[8]), To, Tm, ovs);
Chris@82 165 }
Chris@82 166 }
Chris@82 167 }
Chris@82 168 }
Chris@82 169 VLEAVE();
Chris@82 170 }
Chris@82 171
Chris@82 172 static const kdft_desc desc = { 6, XSIMD_STRING("n2bv_6"), {16, 2, 2, 0}, &GENUS, 0, 2, 0, 0 };
Chris@82 173
Chris@82 174 void XSIMD(codelet_n2bv_6) (planner *p) {
Chris@82 175 X(kdft_register) (p, n2bv_6, &desc);
Chris@82 176 }
Chris@82 177
Chris@82 178 #endif