cannam@160
|
1 // Copyright John Maddock 2010.
|
cannam@160
|
2 // Copyright Paul A. Bristow 2010.
|
cannam@160
|
3
|
cannam@160
|
4 // Use, modification and distribution are subject to the
|
cannam@160
|
5 // Boost Software License, Version 1.0.
|
cannam@160
|
6 // (See accompanying file LICENSE_1_0.txt
|
cannam@160
|
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
|
cannam@160
|
8
|
cannam@160
|
9 #ifndef BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
|
cannam@160
|
10 #define BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
|
cannam@160
|
11
|
cannam@160
|
12 #include <boost/math/distributions/fwd.hpp>
|
cannam@160
|
13 #include <boost/math/special_functions/gamma.hpp> // for incomplete beta.
|
cannam@160
|
14 #include <boost/math/distributions/complement.hpp> // for complements.
|
cannam@160
|
15 #include <boost/math/distributions/detail/common_error_handling.hpp> // for error checks.
|
cannam@160
|
16 #include <boost/math/special_functions/fpclassify.hpp> // for isfinite
|
cannam@160
|
17
|
cannam@160
|
18 // See http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution
|
cannam@160
|
19 // for definitions of this scaled version.
|
cannam@160
|
20 // See http://en.wikipedia.org/wiki/Inverse-chi-square_distribution
|
cannam@160
|
21 // for unscaled version.
|
cannam@160
|
22
|
cannam@160
|
23 // http://reference.wolfram.com/mathematica/ref/InverseChiSquareDistribution.html
|
cannam@160
|
24 // Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource.
|
cannam@160
|
25 // http://mathworld.wolfram.com/InverseChi-SquaredDistribution.html
|
cannam@160
|
26
|
cannam@160
|
27 #include <utility>
|
cannam@160
|
28
|
cannam@160
|
29 namespace boost{ namespace math{
|
cannam@160
|
30
|
cannam@160
|
31 namespace detail
|
cannam@160
|
32 {
|
cannam@160
|
33 template <class RealType, class Policy>
|
cannam@160
|
34 inline bool check_inverse_chi_squared( // Check both distribution parameters.
|
cannam@160
|
35 const char* function,
|
cannam@160
|
36 RealType degrees_of_freedom, // degrees_of_freedom (aka nu).
|
cannam@160
|
37 RealType scale, // scale (aka sigma^2)
|
cannam@160
|
38 RealType* result,
|
cannam@160
|
39 const Policy& pol)
|
cannam@160
|
40 {
|
cannam@160
|
41 return check_scale(function, scale, result, pol)
|
cannam@160
|
42 && check_df(function, degrees_of_freedom,
|
cannam@160
|
43 result, pol);
|
cannam@160
|
44 } // bool check_inverse_chi_squared
|
cannam@160
|
45 } // namespace detail
|
cannam@160
|
46
|
cannam@160
|
47 template <class RealType = double, class Policy = policies::policy<> >
|
cannam@160
|
48 class inverse_chi_squared_distribution
|
cannam@160
|
49 {
|
cannam@160
|
50 public:
|
cannam@160
|
51 typedef RealType value_type;
|
cannam@160
|
52 typedef Policy policy_type;
|
cannam@160
|
53
|
cannam@160
|
54 inverse_chi_squared_distribution(RealType df, RealType l_scale) : m_df(df), m_scale (l_scale)
|
cannam@160
|
55 {
|
cannam@160
|
56 RealType result;
|
cannam@160
|
57 detail::check_df(
|
cannam@160
|
58 "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
|
cannam@160
|
59 m_df, &result, Policy())
|
cannam@160
|
60 && detail::check_scale(
|
cannam@160
|
61 "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
|
cannam@160
|
62 m_scale, &result, Policy());
|
cannam@160
|
63 } // inverse_chi_squared_distribution constructor
|
cannam@160
|
64
|
cannam@160
|
65 inverse_chi_squared_distribution(RealType df = 1) : m_df(df)
|
cannam@160
|
66 {
|
cannam@160
|
67 RealType result;
|
cannam@160
|
68 m_scale = 1 / m_df ; // Default scale = 1 / degrees of freedom (Wikipedia definition 1).
|
cannam@160
|
69 detail::check_df(
|
cannam@160
|
70 "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
|
cannam@160
|
71 m_df, &result, Policy());
|
cannam@160
|
72 } // inverse_chi_squared_distribution
|
cannam@160
|
73
|
cannam@160
|
74 RealType degrees_of_freedom()const
|
cannam@160
|
75 {
|
cannam@160
|
76 return m_df; // aka nu
|
cannam@160
|
77 }
|
cannam@160
|
78 RealType scale()const
|
cannam@160
|
79 {
|
cannam@160
|
80 return m_scale; // aka xi
|
cannam@160
|
81 }
|
cannam@160
|
82
|
cannam@160
|
83 // Parameter estimation: NOT implemented yet.
|
cannam@160
|
84 //static RealType find_degrees_of_freedom(
|
cannam@160
|
85 // RealType difference_from_variance,
|
cannam@160
|
86 // RealType alpha,
|
cannam@160
|
87 // RealType beta,
|
cannam@160
|
88 // RealType variance,
|
cannam@160
|
89 // RealType hint = 100);
|
cannam@160
|
90
|
cannam@160
|
91 private:
|
cannam@160
|
92 // Data members:
|
cannam@160
|
93 RealType m_df; // degrees of freedom are treated as a real number.
|
cannam@160
|
94 RealType m_scale; // distribution scale.
|
cannam@160
|
95
|
cannam@160
|
96 }; // class chi_squared_distribution
|
cannam@160
|
97
|
cannam@160
|
98 typedef inverse_chi_squared_distribution<double> inverse_chi_squared;
|
cannam@160
|
99
|
cannam@160
|
100 template <class RealType, class Policy>
|
cannam@160
|
101 inline const std::pair<RealType, RealType> range(const inverse_chi_squared_distribution<RealType, Policy>& /*dist*/)
|
cannam@160
|
102 { // Range of permissible values for random variable x.
|
cannam@160
|
103 using boost::math::tools::max_value;
|
cannam@160
|
104 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + infinity.
|
cannam@160
|
105 }
|
cannam@160
|
106
|
cannam@160
|
107 template <class RealType, class Policy>
|
cannam@160
|
108 inline const std::pair<RealType, RealType> support(const inverse_chi_squared_distribution<RealType, Policy>& /*dist*/)
|
cannam@160
|
109 { // Range of supported values for random variable x.
|
cannam@160
|
110 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
cannam@160
|
111 return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity.
|
cannam@160
|
112 }
|
cannam@160
|
113
|
cannam@160
|
114 template <class RealType, class Policy>
|
cannam@160
|
115 RealType pdf(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
|
cannam@160
|
116 {
|
cannam@160
|
117 BOOST_MATH_STD_USING // for ADL of std functions.
|
cannam@160
|
118 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
119 RealType scale = dist.scale();
|
cannam@160
|
120 RealType error_result;
|
cannam@160
|
121
|
cannam@160
|
122 static const char* function = "boost::math::pdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
cannam@160
|
123
|
cannam@160
|
124 if(false == detail::check_inverse_chi_squared
|
cannam@160
|
125 (function, df, scale, &error_result, Policy())
|
cannam@160
|
126 )
|
cannam@160
|
127 { // Bad distribution.
|
cannam@160
|
128 return error_result;
|
cannam@160
|
129 }
|
cannam@160
|
130 if((x < 0) || !(boost::math::isfinite)(x))
|
cannam@160
|
131 { // Bad x.
|
cannam@160
|
132 return policies::raise_domain_error<RealType>(
|
cannam@160
|
133 function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy());
|
cannam@160
|
134 }
|
cannam@160
|
135
|
cannam@160
|
136 if(x == 0)
|
cannam@160
|
137 { // Treat as special case.
|
cannam@160
|
138 return 0;
|
cannam@160
|
139 }
|
cannam@160
|
140 // Wikipedia scaled inverse chi sq (df, scale) related to inv gamma (df/2, df * scale /2)
|
cannam@160
|
141 // so use inverse gamma pdf with shape = df/2, scale df * scale /2
|
cannam@160
|
142 // RealType shape = df /2; // inv_gamma shape
|
cannam@160
|
143 // RealType scale = df * scale/2; // inv_gamma scale
|
cannam@160
|
144 // RealType result = gamma_p_derivative(shape, scale / x, Policy()) * scale / (x * x);
|
cannam@160
|
145 RealType result = df * scale/2 / x;
|
cannam@160
|
146 if(result < tools::min_value<RealType>())
|
cannam@160
|
147 return 0; // Random variable is near enough infinite.
|
cannam@160
|
148 result = gamma_p_derivative(df/2, result, Policy()) * df * scale/2;
|
cannam@160
|
149 if(result != 0) // prevent 0 / 0, gamma_p_derivative -> 0 faster than x^2
|
cannam@160
|
150 result /= (x * x);
|
cannam@160
|
151 return result;
|
cannam@160
|
152 } // pdf
|
cannam@160
|
153
|
cannam@160
|
154 template <class RealType, class Policy>
|
cannam@160
|
155 inline RealType cdf(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
|
cannam@160
|
156 {
|
cannam@160
|
157 static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
cannam@160
|
158 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
159 RealType scale = dist.scale();
|
cannam@160
|
160 RealType error_result;
|
cannam@160
|
161
|
cannam@160
|
162 if(false ==
|
cannam@160
|
163 detail::check_inverse_chi_squared(function, df, scale, &error_result, Policy())
|
cannam@160
|
164 )
|
cannam@160
|
165 { // Bad distribution.
|
cannam@160
|
166 return error_result;
|
cannam@160
|
167 }
|
cannam@160
|
168 if((x < 0) || !(boost::math::isfinite)(x))
|
cannam@160
|
169 { // Bad x.
|
cannam@160
|
170 return policies::raise_domain_error<RealType>(
|
cannam@160
|
171 function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy());
|
cannam@160
|
172 }
|
cannam@160
|
173 if (x == 0)
|
cannam@160
|
174 { // Treat zero as a special case.
|
cannam@160
|
175 return 0;
|
cannam@160
|
176 }
|
cannam@160
|
177 // RealType shape = df /2; // inv_gamma shape,
|
cannam@160
|
178 // RealType scale = df * scale/2; // inv_gamma scale,
|
cannam@160
|
179 // result = boost::math::gamma_q(shape, scale / x, Policy()); // inverse_gamma code.
|
cannam@160
|
180 return boost::math::gamma_q(df / 2, (df * (scale / 2)) / x, Policy());
|
cannam@160
|
181 } // cdf
|
cannam@160
|
182
|
cannam@160
|
183 template <class RealType, class Policy>
|
cannam@160
|
184 inline RealType quantile(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
|
cannam@160
|
185 {
|
cannam@160
|
186 using boost::math::gamma_q_inv;
|
cannam@160
|
187 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
188 RealType scale = dist.scale();
|
cannam@160
|
189
|
cannam@160
|
190 static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
cannam@160
|
191 // Error check:
|
cannam@160
|
192 RealType error_result;
|
cannam@160
|
193 if(false == detail::check_df(
|
cannam@160
|
194 function, df, &error_result, Policy())
|
cannam@160
|
195 && detail::check_probability(
|
cannam@160
|
196 function, p, &error_result, Policy()))
|
cannam@160
|
197 {
|
cannam@160
|
198 return error_result;
|
cannam@160
|
199 }
|
cannam@160
|
200 if(false == detail::check_probability(
|
cannam@160
|
201 function, p, &error_result, Policy()))
|
cannam@160
|
202 {
|
cannam@160
|
203 return error_result;
|
cannam@160
|
204 }
|
cannam@160
|
205 // RealType shape = df /2; // inv_gamma shape,
|
cannam@160
|
206 // RealType scale = df * scale/2; // inv_gamma scale,
|
cannam@160
|
207 // result = scale / gamma_q_inv(shape, p, Policy());
|
cannam@160
|
208 RealType result = gamma_q_inv(df /2, p, Policy());
|
cannam@160
|
209 if(result == 0)
|
cannam@160
|
210 return policies::raise_overflow_error<RealType, Policy>(function, "Random variable is infinite.", Policy());
|
cannam@160
|
211 result = df * (scale / 2) / result;
|
cannam@160
|
212 return result;
|
cannam@160
|
213 } // quantile
|
cannam@160
|
214
|
cannam@160
|
215 template <class RealType, class Policy>
|
cannam@160
|
216 inline RealType cdf(const complemented2_type<inverse_chi_squared_distribution<RealType, Policy>, RealType>& c)
|
cannam@160
|
217 {
|
cannam@160
|
218 using boost::math::gamma_q_inv;
|
cannam@160
|
219 RealType const& df = c.dist.degrees_of_freedom();
|
cannam@160
|
220 RealType const& scale = c.dist.scale();
|
cannam@160
|
221 RealType const& x = c.param;
|
cannam@160
|
222 static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
cannam@160
|
223 // Error check:
|
cannam@160
|
224 RealType error_result;
|
cannam@160
|
225 if(false == detail::check_df(
|
cannam@160
|
226 function, df, &error_result, Policy()))
|
cannam@160
|
227 {
|
cannam@160
|
228 return error_result;
|
cannam@160
|
229 }
|
cannam@160
|
230 if (x == 0)
|
cannam@160
|
231 { // Treat zero as a special case.
|
cannam@160
|
232 return 1;
|
cannam@160
|
233 }
|
cannam@160
|
234 if((x < 0) || !(boost::math::isfinite)(x))
|
cannam@160
|
235 {
|
cannam@160
|
236 return policies::raise_domain_error<RealType>(
|
cannam@160
|
237 function, "inverse Chi Square parameter was %1%, but must be > 0 !", x, Policy());
|
cannam@160
|
238 }
|
cannam@160
|
239 // RealType shape = df /2; // inv_gamma shape,
|
cannam@160
|
240 // RealType scale = df * scale/2; // inv_gamma scale,
|
cannam@160
|
241 // result = gamma_p(shape, scale/c.param, Policy()); use inv_gamma.
|
cannam@160
|
242
|
cannam@160
|
243 return gamma_p(df / 2, (df * scale/2) / x, Policy()); // OK
|
cannam@160
|
244 } // cdf(complemented
|
cannam@160
|
245
|
cannam@160
|
246 template <class RealType, class Policy>
|
cannam@160
|
247 inline RealType quantile(const complemented2_type<inverse_chi_squared_distribution<RealType, Policy>, RealType>& c)
|
cannam@160
|
248 {
|
cannam@160
|
249 using boost::math::gamma_q_inv;
|
cannam@160
|
250
|
cannam@160
|
251 RealType const& df = c.dist.degrees_of_freedom();
|
cannam@160
|
252 RealType const& scale = c.dist.scale();
|
cannam@160
|
253 RealType const& q = c.param;
|
cannam@160
|
254 static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)";
|
cannam@160
|
255 // Error check:
|
cannam@160
|
256 RealType error_result;
|
cannam@160
|
257 if(false == detail::check_df(function, df, &error_result, Policy()))
|
cannam@160
|
258 {
|
cannam@160
|
259 return error_result;
|
cannam@160
|
260 }
|
cannam@160
|
261 if(false == detail::check_probability(function, q, &error_result, Policy()))
|
cannam@160
|
262 {
|
cannam@160
|
263 return error_result;
|
cannam@160
|
264 }
|
cannam@160
|
265 // RealType shape = df /2; // inv_gamma shape,
|
cannam@160
|
266 // RealType scale = df * scale/2; // inv_gamma scale,
|
cannam@160
|
267 // result = scale / gamma_p_inv(shape, q, Policy()); // using inv_gamma.
|
cannam@160
|
268 RealType result = gamma_p_inv(df/2, q, Policy());
|
cannam@160
|
269 if(result == 0)
|
cannam@160
|
270 return policies::raise_overflow_error<RealType, Policy>(function, "Random variable is infinite.", Policy());
|
cannam@160
|
271 result = (df * scale / 2) / result;
|
cannam@160
|
272 return result;
|
cannam@160
|
273 } // quantile(const complement
|
cannam@160
|
274
|
cannam@160
|
275 template <class RealType, class Policy>
|
cannam@160
|
276 inline RealType mean(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
277 { // Mean of inverse Chi-Squared distribution.
|
cannam@160
|
278 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
279 RealType scale = dist.scale();
|
cannam@160
|
280
|
cannam@160
|
281 static const char* function = "boost::math::mean(const inverse_chi_squared_distribution<%1%>&)";
|
cannam@160
|
282 if(df <= 2)
|
cannam@160
|
283 return policies::raise_domain_error<RealType>(
|
cannam@160
|
284 function,
|
cannam@160
|
285 "inverse Chi-Squared distribution only has a mode for degrees of freedom > 2, but got degrees of freedom = %1%.",
|
cannam@160
|
286 df, Policy());
|
cannam@160
|
287 return (df * scale) / (df - 2);
|
cannam@160
|
288 } // mean
|
cannam@160
|
289
|
cannam@160
|
290 template <class RealType, class Policy>
|
cannam@160
|
291 inline RealType variance(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
292 { // Variance of inverse Chi-Squared distribution.
|
cannam@160
|
293 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
294 RealType scale = dist.scale();
|
cannam@160
|
295 static const char* function = "boost::math::variance(const inverse_chi_squared_distribution<%1%>&)";
|
cannam@160
|
296 if(df <= 4)
|
cannam@160
|
297 {
|
cannam@160
|
298 return policies::raise_domain_error<RealType>(
|
cannam@160
|
299 function,
|
cannam@160
|
300 "inverse Chi-Squared distribution only has a variance for degrees of freedom > 4, but got degrees of freedom = %1%.",
|
cannam@160
|
301 df, Policy());
|
cannam@160
|
302 }
|
cannam@160
|
303 return 2 * df * df * scale * scale / ((df - 2)*(df - 2) * (df - 4));
|
cannam@160
|
304 } // variance
|
cannam@160
|
305
|
cannam@160
|
306 template <class RealType, class Policy>
|
cannam@160
|
307 inline RealType mode(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
308 { // mode is not defined in Mathematica.
|
cannam@160
|
309 // See Discussion section http://en.wikipedia.org/wiki/Talk:Scaled-inverse-chi-square_distribution
|
cannam@160
|
310 // for origin of the formula used below.
|
cannam@160
|
311
|
cannam@160
|
312 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
313 RealType scale = dist.scale();
|
cannam@160
|
314 static const char* function = "boost::math::mode(const inverse_chi_squared_distribution<%1%>&)";
|
cannam@160
|
315 if(df < 0)
|
cannam@160
|
316 return policies::raise_domain_error<RealType>(
|
cannam@160
|
317 function,
|
cannam@160
|
318 "inverse Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.",
|
cannam@160
|
319 df, Policy());
|
cannam@160
|
320 return (df * scale) / (df + 2);
|
cannam@160
|
321 }
|
cannam@160
|
322
|
cannam@160
|
323 //template <class RealType, class Policy>
|
cannam@160
|
324 //inline RealType median(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
325 //{ // Median is given by Quantile[dist, 1/2]
|
cannam@160
|
326 // RealType df = dist.degrees_of_freedom();
|
cannam@160
|
327 // if(df <= 1)
|
cannam@160
|
328 // return tools::domain_error<RealType>(
|
cannam@160
|
329 // BOOST_CURRENT_FUNCTION,
|
cannam@160
|
330 // "The inverse_Chi-Squared distribution only has a median for degrees of freedom >= 0, but got degrees of freedom = %1%.",
|
cannam@160
|
331 // df);
|
cannam@160
|
332 // return df;
|
cannam@160
|
333 //}
|
cannam@160
|
334 // Now implemented via quantile(half) in derived accessors.
|
cannam@160
|
335
|
cannam@160
|
336 template <class RealType, class Policy>
|
cannam@160
|
337 inline RealType skewness(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
338 {
|
cannam@160
|
339 BOOST_MATH_STD_USING // For ADL
|
cannam@160
|
340 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
341 static const char* function = "boost::math::skewness(const inverse_chi_squared_distribution<%1%>&)";
|
cannam@160
|
342 if(df <= 6)
|
cannam@160
|
343 return policies::raise_domain_error<RealType>(
|
cannam@160
|
344 function,
|
cannam@160
|
345 "inverse Chi-Squared distribution only has a skewness for degrees of freedom > 6, but got degrees of freedom = %1%.",
|
cannam@160
|
346 df, Policy());
|
cannam@160
|
347
|
cannam@160
|
348 return 4 * sqrt (2 * (df - 4)) / (df - 6); // Not a function of scale.
|
cannam@160
|
349 }
|
cannam@160
|
350
|
cannam@160
|
351 template <class RealType, class Policy>
|
cannam@160
|
352 inline RealType kurtosis(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
353 {
|
cannam@160
|
354 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
355 static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)";
|
cannam@160
|
356 if(df <= 8)
|
cannam@160
|
357 return policies::raise_domain_error<RealType>(
|
cannam@160
|
358 function,
|
cannam@160
|
359 "inverse Chi-Squared distribution only has a kurtosis for degrees of freedom > 8, but got degrees of freedom = %1%.",
|
cannam@160
|
360 df, Policy());
|
cannam@160
|
361
|
cannam@160
|
362 return kurtosis_excess(dist) + 3;
|
cannam@160
|
363 }
|
cannam@160
|
364
|
cannam@160
|
365 template <class RealType, class Policy>
|
cannam@160
|
366 inline RealType kurtosis_excess(const inverse_chi_squared_distribution<RealType, Policy>& dist)
|
cannam@160
|
367 {
|
cannam@160
|
368 RealType df = dist.degrees_of_freedom();
|
cannam@160
|
369 static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)";
|
cannam@160
|
370 if(df <= 8)
|
cannam@160
|
371 return policies::raise_domain_error<RealType>(
|
cannam@160
|
372 function,
|
cannam@160
|
373 "inverse Chi-Squared distribution only has a kurtosis excess for degrees of freedom > 8, but got degrees of freedom = %1%.",
|
cannam@160
|
374 df, Policy());
|
cannam@160
|
375
|
cannam@160
|
376 return 12 * (5 * df - 22) / ((df - 6 )*(df - 8)); // Not a function of scale.
|
cannam@160
|
377 }
|
cannam@160
|
378
|
cannam@160
|
379 //
|
cannam@160
|
380 // Parameter estimation comes last:
|
cannam@160
|
381 //
|
cannam@160
|
382
|
cannam@160
|
383 } // namespace math
|
cannam@160
|
384 } // namespace boost
|
cannam@160
|
385
|
cannam@160
|
386 // This include must be at the end, *after* the accessors
|
cannam@160
|
387 // for this distribution have been defined, in order to
|
cannam@160
|
388 // keep compilers that support two-phase lookup happy.
|
cannam@160
|
389 #include <boost/math/distributions/detail/derived_accessors.hpp>
|
cannam@160
|
390
|
cannam@160
|
391 #endif // BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
|