cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * VSX SIMD implementation added 2015 Erik Lindahl.
|
cannam@167
|
6 * Erik Lindahl places his modifications in the public domain.
|
cannam@167
|
7 *
|
cannam@167
|
8 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
9 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
10 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
11 * (at your option) any later version.
|
cannam@167
|
12 *
|
cannam@167
|
13 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
16 * GNU General Public License for more details.
|
cannam@167
|
17 *
|
cannam@167
|
18 * You should have received a copy of the GNU General Public License
|
cannam@167
|
19 * along with this program; if not, write to the Free Software
|
cannam@167
|
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
21 *
|
cannam@167
|
22 */
|
cannam@167
|
23
|
cannam@167
|
24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
cannam@167
|
25 # error "VSX only works in single or double precision"
|
cannam@167
|
26 #endif
|
cannam@167
|
27
|
cannam@167
|
28 #ifdef FFTW_SINGLE
|
cannam@167
|
29 # define DS(d,s) s /* single-precision option */
|
cannam@167
|
30 # define SUFF(name) name ## s
|
cannam@167
|
31 #else
|
cannam@167
|
32 # define DS(d,s) d /* double-precision option */
|
cannam@167
|
33 # define SUFF(name) name ## d
|
cannam@167
|
34 #endif
|
cannam@167
|
35
|
cannam@167
|
36 #define SIMD_SUFFIX _vsx /* for renaming */
|
cannam@167
|
37 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
|
cannam@167
|
38 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
|
cannam@167
|
39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
cannam@167
|
40
|
cannam@167
|
41 #include <altivec.h>
|
cannam@167
|
42 #include <stdio.h>
|
cannam@167
|
43
|
cannam@167
|
44 typedef DS(vector double,vector float) V;
|
cannam@167
|
45
|
cannam@167
|
46 #define VADD(a,b) vec_add(a,b)
|
cannam@167
|
47 #define VSUB(a,b) vec_sub(a,b)
|
cannam@167
|
48 #define VMUL(a,b) vec_mul(a,b)
|
cannam@167
|
49 #define VXOR(a,b) vec_xor(a,b)
|
cannam@167
|
50 #define UNPCKL(a,b) vec_mergel(a,b)
|
cannam@167
|
51 #define UNPCKH(a,b) vec_mergeh(a,b)
|
cannam@167
|
52 #ifdef FFTW_SINGLE
|
cannam@167
|
53 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
|
cannam@167
|
54 # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
|
cannam@167
|
55 #else
|
cannam@167
|
56 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
|
cannam@167
|
57 # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
|
cannam@167
|
58 #endif
|
cannam@167
|
59
|
cannam@167
|
60 static inline V LDK(R f) { return vec_splats(f); }
|
cannam@167
|
61
|
cannam@167
|
62 #define DVK(var, val) const R var = K(val)
|
cannam@167
|
63
|
cannam@167
|
64 static inline V VCONJ(V x)
|
cannam@167
|
65 {
|
cannam@167
|
66 const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0)));
|
cannam@167
|
67 return vec_xor(x, pmpm);
|
cannam@167
|
68 }
|
cannam@167
|
69
|
cannam@167
|
70 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
cannam@167
|
71 {
|
cannam@167
|
72 #ifdef __ibmxl__
|
cannam@167
|
73 return vec_xl(0,(DS(double,float) *)x);
|
cannam@167
|
74 #else
|
cannam@167
|
75 return (*(const V *)(x));
|
cannam@167
|
76 #endif
|
cannam@167
|
77 }
|
cannam@167
|
78
|
cannam@167
|
79 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@167
|
80 {
|
cannam@167
|
81 #ifdef __ibmxl__
|
cannam@167
|
82 vec_xst(v,0,x);
|
cannam@167
|
83 #else
|
cannam@167
|
84 *(V *)x = v;
|
cannam@167
|
85 #endif
|
cannam@167
|
86 }
|
cannam@167
|
87
|
cannam@167
|
88 static inline V FLIP_RI(V x)
|
cannam@167
|
89 {
|
cannam@167
|
90 #ifdef FFTW_SINGLE
|
cannam@167
|
91 const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 };
|
cannam@167
|
92 #else
|
cannam@167
|
93 const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 };
|
cannam@167
|
94 #endif
|
cannam@167
|
95 return vec_perm(x,x,perm);
|
cannam@167
|
96 }
|
cannam@167
|
97
|
cannam@167
|
98 #ifdef FFTW_SINGLE
|
cannam@167
|
99
|
cannam@167
|
100 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
cannam@167
|
101 {
|
cannam@167
|
102 const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
|
cannam@167
|
103
|
cannam@167
|
104 return vec_perm((vector float)vec_splats(*(double *)(x)),
|
cannam@167
|
105 (vector float)vec_splats(*(double *)(x+ivs)),perm);
|
cannam@167
|
106 }
|
cannam@167
|
107
|
cannam@167
|
108 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@167
|
109 {
|
cannam@167
|
110 *(double *)(x+ovs) = vec_extract( (vector double)v, 1 );
|
cannam@167
|
111 *(double *)x = vec_extract( (vector double)v, 0 );
|
cannam@167
|
112 }
|
cannam@167
|
113 #else
|
cannam@167
|
114 /* DOUBLE */
|
cannam@167
|
115
|
cannam@167
|
116 # define LD LDA
|
cannam@167
|
117 # define ST STA
|
cannam@167
|
118
|
cannam@167
|
119 #endif
|
cannam@167
|
120
|
cannam@167
|
121 #define STM2 DS(STA,ST)
|
cannam@167
|
122 #define STN2(x, v0, v1, ovs) /* nop */
|
cannam@167
|
123
|
cannam@167
|
124 #ifdef FFTW_SINGLE
|
cannam@167
|
125
|
cannam@167
|
126 # define STM4(x, v, ovs, aligned_like) /* no-op */
|
cannam@167
|
127 static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs)
|
cannam@167
|
128 {
|
cannam@167
|
129 V xxx0, xxx1, xxx2, xxx3;
|
cannam@167
|
130 xxx0 = vec_mergeh(v0,v1);
|
cannam@167
|
131 xxx1 = vec_mergel(v0,v1);
|
cannam@167
|
132 xxx2 = vec_mergeh(v2,v3);
|
cannam@167
|
133 xxx3 = vec_mergel(v2,v3);
|
cannam@167
|
134 *(double *)x = vec_extract( (vector double)xxx0, 0 );
|
cannam@167
|
135 *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 );
|
cannam@167
|
136 *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 );
|
cannam@167
|
137 *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 );
|
cannam@167
|
138 *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 );
|
cannam@167
|
139 *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 );
|
cannam@167
|
140 *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 );
|
cannam@167
|
141 *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 );
|
cannam@167
|
142 }
|
cannam@167
|
143 #else /* !FFTW_SINGLE */
|
cannam@167
|
144
|
cannam@167
|
145 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@167
|
146 {
|
cannam@167
|
147 (void)aligned_like; /* UNUSED */
|
cannam@167
|
148 x[0] = vec_extract(v,0);
|
cannam@167
|
149 x[ovs] = vec_extract(v,1);
|
cannam@167
|
150 }
|
cannam@167
|
151 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
|
cannam@167
|
152 #endif
|
cannam@167
|
153
|
cannam@167
|
154 static inline V VBYI(V x)
|
cannam@167
|
155 {
|
cannam@167
|
156 /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
|
cannam@167
|
157 but gcc and xlc treat the permutation bits differently, and
|
cannam@167
|
158 gcc-6 seems to generate incorrect code when using
|
cannam@167
|
159 __builtin_crypto_vpermxor() (i.e., VBYI() works for a small
|
cannam@167
|
160 test case but fails in the large).
|
cannam@167
|
161
|
cannam@167
|
162 Punt on vpermxor() for now and do the simple thing.
|
cannam@167
|
163 */
|
cannam@167
|
164 return FLIP_RI(VCONJ(x));
|
cannam@167
|
165 }
|
cannam@167
|
166
|
cannam@167
|
167 /* FMA support */
|
cannam@167
|
168 #define VFMA(a, b, c) vec_madd(a,b,c)
|
cannam@167
|
169 #define VFNMS(a, b, c) vec_nmsub(a,b,c)
|
cannam@167
|
170 #define VFMS(a, b, c) vec_msub(a,b,c)
|
cannam@167
|
171 #define VFMAI(b, c) VADD(c, VBYI(b))
|
cannam@167
|
172 #define VFNMSI(b, c) VSUB(c, VBYI(b))
|
cannam@167
|
173 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
|
cannam@167
|
174 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
|
cannam@167
|
175 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
|
cannam@167
|
176
|
cannam@167
|
177 static inline V VZMUL(V tx, V sr)
|
cannam@167
|
178 {
|
cannam@167
|
179 V tr = VDUPL(tx);
|
cannam@167
|
180 V ti = VDUPH(tx);
|
cannam@167
|
181 tr = VMUL(sr, tr);
|
cannam@167
|
182 sr = VBYI(sr);
|
cannam@167
|
183 return VFMA(ti, sr, tr);
|
cannam@167
|
184 }
|
cannam@167
|
185
|
cannam@167
|
186 static inline V VZMULJ(V tx, V sr)
|
cannam@167
|
187 {
|
cannam@167
|
188 V tr = VDUPL(tx);
|
cannam@167
|
189 V ti = VDUPH(tx);
|
cannam@167
|
190 tr = VMUL(sr, tr);
|
cannam@167
|
191 sr = VBYI(sr);
|
cannam@167
|
192 return VFNMS(ti, sr, tr);
|
cannam@167
|
193 }
|
cannam@167
|
194
|
cannam@167
|
195 static inline V VZMULI(V tx, V sr)
|
cannam@167
|
196 {
|
cannam@167
|
197 V tr = VDUPL(tx);
|
cannam@167
|
198 V ti = VDUPH(tx);
|
cannam@167
|
199 ti = VMUL(ti, sr);
|
cannam@167
|
200 sr = VBYI(sr);
|
cannam@167
|
201 return VFMS(tr, sr, ti);
|
cannam@167
|
202 }
|
cannam@167
|
203
|
cannam@167
|
204 static inline V VZMULIJ(V tx, V sr)
|
cannam@167
|
205 {
|
cannam@167
|
206 V tr = VDUPL(tx);
|
cannam@167
|
207 V ti = VDUPH(tx);
|
cannam@167
|
208 ti = VMUL(ti, sr);
|
cannam@167
|
209 sr = VBYI(sr);
|
cannam@167
|
210 return VFMA(tr, sr, ti);
|
cannam@167
|
211 }
|
cannam@167
|
212
|
cannam@167
|
213 /* twiddle storage #1: compact, slower */
|
cannam@167
|
214 #ifdef FFTW_SINGLE
|
cannam@167
|
215 # define VTW1(v,x) \
|
cannam@167
|
216 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
cannam@167
|
217 static inline V BYTW1(const R *t, V sr)
|
cannam@167
|
218 {
|
cannam@167
|
219 V tx = LDA(t,0,t);
|
cannam@167
|
220 V tr = UNPCKH(tx, tx);
|
cannam@167
|
221 V ti = UNPCKL(tx, tx);
|
cannam@167
|
222 tr = VMUL(tr, sr);
|
cannam@167
|
223 sr = VBYI(sr);
|
cannam@167
|
224 return VFMA(ti, sr, tr);
|
cannam@167
|
225 }
|
cannam@167
|
226 static inline V BYTWJ1(const R *t, V sr)
|
cannam@167
|
227 {
|
cannam@167
|
228 V tx = LDA(t,0,t);
|
cannam@167
|
229 V tr = UNPCKH(tx, tx);
|
cannam@167
|
230 V ti = UNPCKL(tx, tx);
|
cannam@167
|
231 tr = VMUL(tr, sr);
|
cannam@167
|
232 sr = VBYI(sr);
|
cannam@167
|
233 return VFNMS(ti, sr, tr);
|
cannam@167
|
234 }
|
cannam@167
|
235 #else /* !FFTW_SINGLE */
|
cannam@167
|
236 # define VTW1(v,x) {TW_CEXP, v, x}
|
cannam@167
|
237 static inline V BYTW1(const R *t, V sr)
|
cannam@167
|
238 {
|
cannam@167
|
239 V tx = LD(t, 1, t);
|
cannam@167
|
240 return VZMUL(tx, sr);
|
cannam@167
|
241 }
|
cannam@167
|
242 static inline V BYTWJ1(const R *t, V sr)
|
cannam@167
|
243 {
|
cannam@167
|
244 V tx = LD(t, 1, t);
|
cannam@167
|
245 return VZMULJ(tx, sr);
|
cannam@167
|
246 }
|
cannam@167
|
247 #endif
|
cannam@167
|
248 #define TWVL1 (VL)
|
cannam@167
|
249
|
cannam@167
|
250 /* twiddle storage #2: twice the space, faster (when in cache) */
|
cannam@167
|
251 #ifdef FFTW_SINGLE
|
cannam@167
|
252 # define VTW2(v,x) \
|
cannam@167
|
253 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
cannam@167
|
254 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
cannam@167
|
255 #else /* !FFTW_SINGLE */
|
cannam@167
|
256 # define VTW2(v,x) \
|
cannam@167
|
257 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
|
cannam@167
|
258 #endif
|
cannam@167
|
259 #define TWVL2 (2 * VL)
|
cannam@167
|
260 static inline V BYTW2(const R *t, V sr)
|
cannam@167
|
261 {
|
cannam@167
|
262 V si = FLIP_RI(sr);
|
cannam@167
|
263 V ti = LDA(t+2*VL,0,t);
|
cannam@167
|
264 V tt = VMUL(ti, si);
|
cannam@167
|
265 V tr = LDA(t,0,t);
|
cannam@167
|
266 return VFMA(tr, sr, tt);
|
cannam@167
|
267 }
|
cannam@167
|
268 static inline V BYTWJ2(const R *t, V sr)
|
cannam@167
|
269 {
|
cannam@167
|
270 V si = FLIP_RI(sr);
|
cannam@167
|
271 V tr = LDA(t,0,t);
|
cannam@167
|
272 V tt = VMUL(tr, sr);
|
cannam@167
|
273 V ti = LDA(t+2*VL,0,t);
|
cannam@167
|
274 return VFNMS(ti, si, tt);
|
cannam@167
|
275 }
|
cannam@167
|
276
|
cannam@167
|
277 /* twiddle storage #3 */
|
cannam@167
|
278 #ifdef FFTW_SINGLE
|
cannam@167
|
279 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
cannam@167
|
280 # define TWVL3 (VL)
|
cannam@167
|
281 #else
|
cannam@167
|
282 # define VTW3(v,x) VTW1(v,x)
|
cannam@167
|
283 # define TWVL3 TWVL1
|
cannam@167
|
284 #endif
|
cannam@167
|
285
|
cannam@167
|
286 /* twiddle storage for split arrays */
|
cannam@167
|
287 #ifdef FFTW_SINGLE
|
cannam@167
|
288 # define VTWS(v,x) \
|
cannam@167
|
289 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
cannam@167
|
290 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
cannam@167
|
291 #else
|
cannam@167
|
292 # define VTWS(v,x) \
|
cannam@167
|
293 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
|
cannam@167
|
294 #endif
|
cannam@167
|
295 #define TWVLS (2 * VL)
|
cannam@167
|
296
|
cannam@167
|
297 #define VLEAVE() /* nothing */
|
cannam@167
|
298
|
cannam@167
|
299 #include "simd-common.h"
|