annotate src/fftw-3.3.8/simd-support/simd-vsx.h @ 168:ceec0dd9ec9c

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 07 Feb 2020 11:51:13 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * VSX SIMD implementation added 2015 Erik Lindahl.
cannam@167 6 * Erik Lindahl places his modifications in the public domain.
cannam@167 7 *
cannam@167 8 * This program is free software; you can redistribute it and/or modify
cannam@167 9 * it under the terms of the GNU General Public License as published by
cannam@167 10 * the Free Software Foundation; either version 2 of the License, or
cannam@167 11 * (at your option) any later version.
cannam@167 12 *
cannam@167 13 * This program is distributed in the hope that it will be useful,
cannam@167 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 16 * GNU General Public License for more details.
cannam@167 17 *
cannam@167 18 * You should have received a copy of the GNU General Public License
cannam@167 19 * along with this program; if not, write to the Free Software
cannam@167 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 21 *
cannam@167 22 */
cannam@167 23
cannam@167 24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
cannam@167 25 # error "VSX only works in single or double precision"
cannam@167 26 #endif
cannam@167 27
cannam@167 28 #ifdef FFTW_SINGLE
cannam@167 29 # define DS(d,s) s /* single-precision option */
cannam@167 30 # define SUFF(name) name ## s
cannam@167 31 #else
cannam@167 32 # define DS(d,s) d /* double-precision option */
cannam@167 33 # define SUFF(name) name ## d
cannam@167 34 #endif
cannam@167 35
cannam@167 36 #define SIMD_SUFFIX _vsx /* for renaming */
cannam@167 37 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
cannam@167 38 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
cannam@167 39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
cannam@167 40
cannam@167 41 #include <altivec.h>
cannam@167 42 #include <stdio.h>
cannam@167 43
cannam@167 44 typedef DS(vector double,vector float) V;
cannam@167 45
cannam@167 46 #define VADD(a,b) vec_add(a,b)
cannam@167 47 #define VSUB(a,b) vec_sub(a,b)
cannam@167 48 #define VMUL(a,b) vec_mul(a,b)
cannam@167 49 #define VXOR(a,b) vec_xor(a,b)
cannam@167 50 #define UNPCKL(a,b) vec_mergel(a,b)
cannam@167 51 #define UNPCKH(a,b) vec_mergeh(a,b)
cannam@167 52 #ifdef FFTW_SINGLE
cannam@167 53 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
cannam@167 54 # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
cannam@167 55 #else
cannam@167 56 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
cannam@167 57 # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
cannam@167 58 #endif
cannam@167 59
cannam@167 60 static inline V LDK(R f) { return vec_splats(f); }
cannam@167 61
cannam@167 62 #define DVK(var, val) const R var = K(val)
cannam@167 63
cannam@167 64 static inline V VCONJ(V x)
cannam@167 65 {
cannam@167 66 const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0)));
cannam@167 67 return vec_xor(x, pmpm);
cannam@167 68 }
cannam@167 69
cannam@167 70 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
cannam@167 71 {
cannam@167 72 #ifdef __ibmxl__
cannam@167 73 return vec_xl(0,(DS(double,float) *)x);
cannam@167 74 #else
cannam@167 75 return (*(const V *)(x));
cannam@167 76 #endif
cannam@167 77 }
cannam@167 78
cannam@167 79 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
cannam@167 80 {
cannam@167 81 #ifdef __ibmxl__
cannam@167 82 vec_xst(v,0,x);
cannam@167 83 #else
cannam@167 84 *(V *)x = v;
cannam@167 85 #endif
cannam@167 86 }
cannam@167 87
cannam@167 88 static inline V FLIP_RI(V x)
cannam@167 89 {
cannam@167 90 #ifdef FFTW_SINGLE
cannam@167 91 const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 };
cannam@167 92 #else
cannam@167 93 const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 };
cannam@167 94 #endif
cannam@167 95 return vec_perm(x,x,perm);
cannam@167 96 }
cannam@167 97
cannam@167 98 #ifdef FFTW_SINGLE
cannam@167 99
cannam@167 100 static inline V LD(const R *x, INT ivs, const R *aligned_like)
cannam@167 101 {
cannam@167 102 const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
cannam@167 103
cannam@167 104 return vec_perm((vector float)vec_splats(*(double *)(x)),
cannam@167 105 (vector float)vec_splats(*(double *)(x+ivs)),perm);
cannam@167 106 }
cannam@167 107
cannam@167 108 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
cannam@167 109 {
cannam@167 110 *(double *)(x+ovs) = vec_extract( (vector double)v, 1 );
cannam@167 111 *(double *)x = vec_extract( (vector double)v, 0 );
cannam@167 112 }
cannam@167 113 #else
cannam@167 114 /* DOUBLE */
cannam@167 115
cannam@167 116 # define LD LDA
cannam@167 117 # define ST STA
cannam@167 118
cannam@167 119 #endif
cannam@167 120
cannam@167 121 #define STM2 DS(STA,ST)
cannam@167 122 #define STN2(x, v0, v1, ovs) /* nop */
cannam@167 123
cannam@167 124 #ifdef FFTW_SINGLE
cannam@167 125
cannam@167 126 # define STM4(x, v, ovs, aligned_like) /* no-op */
cannam@167 127 static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs)
cannam@167 128 {
cannam@167 129 V xxx0, xxx1, xxx2, xxx3;
cannam@167 130 xxx0 = vec_mergeh(v0,v1);
cannam@167 131 xxx1 = vec_mergel(v0,v1);
cannam@167 132 xxx2 = vec_mergeh(v2,v3);
cannam@167 133 xxx3 = vec_mergel(v2,v3);
cannam@167 134 *(double *)x = vec_extract( (vector double)xxx0, 0 );
cannam@167 135 *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 );
cannam@167 136 *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 );
cannam@167 137 *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 );
cannam@167 138 *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 );
cannam@167 139 *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 );
cannam@167 140 *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 );
cannam@167 141 *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 );
cannam@167 142 }
cannam@167 143 #else /* !FFTW_SINGLE */
cannam@167 144
cannam@167 145 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
cannam@167 146 {
cannam@167 147 (void)aligned_like; /* UNUSED */
cannam@167 148 x[0] = vec_extract(v,0);
cannam@167 149 x[ovs] = vec_extract(v,1);
cannam@167 150 }
cannam@167 151 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
cannam@167 152 #endif
cannam@167 153
cannam@167 154 static inline V VBYI(V x)
cannam@167 155 {
cannam@167 156 /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
cannam@167 157 but gcc and xlc treat the permutation bits differently, and
cannam@167 158 gcc-6 seems to generate incorrect code when using
cannam@167 159 __builtin_crypto_vpermxor() (i.e., VBYI() works for a small
cannam@167 160 test case but fails in the large).
cannam@167 161
cannam@167 162 Punt on vpermxor() for now and do the simple thing.
cannam@167 163 */
cannam@167 164 return FLIP_RI(VCONJ(x));
cannam@167 165 }
cannam@167 166
cannam@167 167 /* FMA support */
cannam@167 168 #define VFMA(a, b, c) vec_madd(a,b,c)
cannam@167 169 #define VFNMS(a, b, c) vec_nmsub(a,b,c)
cannam@167 170 #define VFMS(a, b, c) vec_msub(a,b,c)
cannam@167 171 #define VFMAI(b, c) VADD(c, VBYI(b))
cannam@167 172 #define VFNMSI(b, c) VSUB(c, VBYI(b))
cannam@167 173 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
cannam@167 174 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
cannam@167 175 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
cannam@167 176
cannam@167 177 static inline V VZMUL(V tx, V sr)
cannam@167 178 {
cannam@167 179 V tr = VDUPL(tx);
cannam@167 180 V ti = VDUPH(tx);
cannam@167 181 tr = VMUL(sr, tr);
cannam@167 182 sr = VBYI(sr);
cannam@167 183 return VFMA(ti, sr, tr);
cannam@167 184 }
cannam@167 185
cannam@167 186 static inline V VZMULJ(V tx, V sr)
cannam@167 187 {
cannam@167 188 V tr = VDUPL(tx);
cannam@167 189 V ti = VDUPH(tx);
cannam@167 190 tr = VMUL(sr, tr);
cannam@167 191 sr = VBYI(sr);
cannam@167 192 return VFNMS(ti, sr, tr);
cannam@167 193 }
cannam@167 194
cannam@167 195 static inline V VZMULI(V tx, V sr)
cannam@167 196 {
cannam@167 197 V tr = VDUPL(tx);
cannam@167 198 V ti = VDUPH(tx);
cannam@167 199 ti = VMUL(ti, sr);
cannam@167 200 sr = VBYI(sr);
cannam@167 201 return VFMS(tr, sr, ti);
cannam@167 202 }
cannam@167 203
cannam@167 204 static inline V VZMULIJ(V tx, V sr)
cannam@167 205 {
cannam@167 206 V tr = VDUPL(tx);
cannam@167 207 V ti = VDUPH(tx);
cannam@167 208 ti = VMUL(ti, sr);
cannam@167 209 sr = VBYI(sr);
cannam@167 210 return VFMA(tr, sr, ti);
cannam@167 211 }
cannam@167 212
cannam@167 213 /* twiddle storage #1: compact, slower */
cannam@167 214 #ifdef FFTW_SINGLE
cannam@167 215 # define VTW1(v,x) \
cannam@167 216 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@167 217 static inline V BYTW1(const R *t, V sr)
cannam@167 218 {
cannam@167 219 V tx = LDA(t,0,t);
cannam@167 220 V tr = UNPCKH(tx, tx);
cannam@167 221 V ti = UNPCKL(tx, tx);
cannam@167 222 tr = VMUL(tr, sr);
cannam@167 223 sr = VBYI(sr);
cannam@167 224 return VFMA(ti, sr, tr);
cannam@167 225 }
cannam@167 226 static inline V BYTWJ1(const R *t, V sr)
cannam@167 227 {
cannam@167 228 V tx = LDA(t,0,t);
cannam@167 229 V tr = UNPCKH(tx, tx);
cannam@167 230 V ti = UNPCKL(tx, tx);
cannam@167 231 tr = VMUL(tr, sr);
cannam@167 232 sr = VBYI(sr);
cannam@167 233 return VFNMS(ti, sr, tr);
cannam@167 234 }
cannam@167 235 #else /* !FFTW_SINGLE */
cannam@167 236 # define VTW1(v,x) {TW_CEXP, v, x}
cannam@167 237 static inline V BYTW1(const R *t, V sr)
cannam@167 238 {
cannam@167 239 V tx = LD(t, 1, t);
cannam@167 240 return VZMUL(tx, sr);
cannam@167 241 }
cannam@167 242 static inline V BYTWJ1(const R *t, V sr)
cannam@167 243 {
cannam@167 244 V tx = LD(t, 1, t);
cannam@167 245 return VZMULJ(tx, sr);
cannam@167 246 }
cannam@167 247 #endif
cannam@167 248 #define TWVL1 (VL)
cannam@167 249
cannam@167 250 /* twiddle storage #2: twice the space, faster (when in cache) */
cannam@167 251 #ifdef FFTW_SINGLE
cannam@167 252 # define VTW2(v,x) \
cannam@167 253 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
cannam@167 254 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
cannam@167 255 #else /* !FFTW_SINGLE */
cannam@167 256 # define VTW2(v,x) \
cannam@167 257 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
cannam@167 258 #endif
cannam@167 259 #define TWVL2 (2 * VL)
cannam@167 260 static inline V BYTW2(const R *t, V sr)
cannam@167 261 {
cannam@167 262 V si = FLIP_RI(sr);
cannam@167 263 V ti = LDA(t+2*VL,0,t);
cannam@167 264 V tt = VMUL(ti, si);
cannam@167 265 V tr = LDA(t,0,t);
cannam@167 266 return VFMA(tr, sr, tt);
cannam@167 267 }
cannam@167 268 static inline V BYTWJ2(const R *t, V sr)
cannam@167 269 {
cannam@167 270 V si = FLIP_RI(sr);
cannam@167 271 V tr = LDA(t,0,t);
cannam@167 272 V tt = VMUL(tr, sr);
cannam@167 273 V ti = LDA(t+2*VL,0,t);
cannam@167 274 return VFNMS(ti, si, tt);
cannam@167 275 }
cannam@167 276
cannam@167 277 /* twiddle storage #3 */
cannam@167 278 #ifdef FFTW_SINGLE
cannam@167 279 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
cannam@167 280 # define TWVL3 (VL)
cannam@167 281 #else
cannam@167 282 # define VTW3(v,x) VTW1(v,x)
cannam@167 283 # define TWVL3 TWVL1
cannam@167 284 #endif
cannam@167 285
cannam@167 286 /* twiddle storage for split arrays */
cannam@167 287 #ifdef FFTW_SINGLE
cannam@167 288 # define VTWS(v,x) \
cannam@167 289 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
cannam@167 290 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
cannam@167 291 #else
cannam@167 292 # define VTWS(v,x) \
cannam@167 293 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@167 294 #endif
cannam@167 295 #define TWVLS (2 * VL)
cannam@167 296
cannam@167 297 #define VLEAVE() /* nothing */
cannam@167 298
cannam@167 299 #include "simd-common.h"