cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * VSX SIMD implementation added 2015 Erik Lindahl. cannam@167: * Erik Lindahl places his modifications in the public domain. cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) cannam@167: # error "VSX only works in single or double precision" cannam@167: #endif cannam@167: cannam@167: #ifdef FFTW_SINGLE cannam@167: # define DS(d,s) s /* single-precision option */ cannam@167: # define SUFF(name) name ## s cannam@167: #else cannam@167: # define DS(d,s) d /* double-precision option */ cannam@167: # define SUFF(name) name ## d cannam@167: #endif cannam@167: cannam@167: #define SIMD_SUFFIX _vsx /* for renaming */ cannam@167: #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ cannam@167: #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) cannam@167: #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK cannam@167: cannam@167: #include cannam@167: #include cannam@167: cannam@167: typedef DS(vector double,vector float) V; cannam@167: cannam@167: #define VADD(a,b) vec_add(a,b) cannam@167: #define VSUB(a,b) vec_sub(a,b) cannam@167: #define VMUL(a,b) vec_mul(a,b) cannam@167: #define VXOR(a,b) vec_xor(a,b) cannam@167: #define UNPCKL(a,b) vec_mergel(a,b) cannam@167: #define UNPCKH(a,b) vec_mergeh(a,b) cannam@167: #ifdef FFTW_SINGLE cannam@167: # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); }) cannam@167: # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); }) cannam@167: #else cannam@167: # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); }) cannam@167: # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); }) cannam@167: #endif cannam@167: cannam@167: static inline V LDK(R f) { return vec_splats(f); } cannam@167: cannam@167: #define DVK(var, val) const R var = K(val) cannam@167: cannam@167: static inline V VCONJ(V x) cannam@167: { cannam@167: const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0))); cannam@167: return vec_xor(x, pmpm); cannam@167: } cannam@167: cannam@167: static inline V LDA(const R *x, INT ivs, const R *aligned_like) cannam@167: { cannam@167: #ifdef __ibmxl__ cannam@167: return vec_xl(0,(DS(double,float) *)x); cannam@167: #else cannam@167: return (*(const V *)(x)); cannam@167: #endif cannam@167: } cannam@167: cannam@167: static inline void STA(R *x, V v, INT ovs, const R *aligned_like) cannam@167: { cannam@167: #ifdef __ibmxl__ cannam@167: vec_xst(v,0,x); cannam@167: #else cannam@167: *(V *)x = v; cannam@167: #endif cannam@167: } cannam@167: cannam@167: static inline V FLIP_RI(V x) cannam@167: { cannam@167: #ifdef FFTW_SINGLE cannam@167: const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 }; cannam@167: #else cannam@167: const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 }; cannam@167: #endif cannam@167: return vec_perm(x,x,perm); cannam@167: } cannam@167: cannam@167: #ifdef FFTW_SINGLE cannam@167: cannam@167: static inline V LD(const R *x, INT ivs, const R *aligned_like) cannam@167: { cannam@167: const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23}; cannam@167: cannam@167: return vec_perm((vector float)vec_splats(*(double *)(x)), cannam@167: (vector float)vec_splats(*(double *)(x+ivs)),perm); cannam@167: } cannam@167: cannam@167: static inline void ST(R *x, V v, INT ovs, const R *aligned_like) cannam@167: { cannam@167: *(double *)(x+ovs) = vec_extract( (vector double)v, 1 ); cannam@167: *(double *)x = vec_extract( (vector double)v, 0 ); cannam@167: } cannam@167: #else cannam@167: /* DOUBLE */ cannam@167: cannam@167: # define LD LDA cannam@167: # define ST STA cannam@167: cannam@167: #endif cannam@167: cannam@167: #define STM2 DS(STA,ST) cannam@167: #define STN2(x, v0, v1, ovs) /* nop */ cannam@167: cannam@167: #ifdef FFTW_SINGLE cannam@167: cannam@167: # define STM4(x, v, ovs, aligned_like) /* no-op */ cannam@167: static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs) cannam@167: { cannam@167: V xxx0, xxx1, xxx2, xxx3; cannam@167: xxx0 = vec_mergeh(v0,v1); cannam@167: xxx1 = vec_mergel(v0,v1); cannam@167: xxx2 = vec_mergeh(v2,v3); cannam@167: xxx3 = vec_mergel(v2,v3); cannam@167: *(double *)x = vec_extract( (vector double)xxx0, 0 ); cannam@167: *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 ); cannam@167: *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 ); cannam@167: *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 ); cannam@167: *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 ); cannam@167: *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 ); cannam@167: *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 ); cannam@167: *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 ); cannam@167: } cannam@167: #else /* !FFTW_SINGLE */ cannam@167: cannam@167: static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) cannam@167: { cannam@167: (void)aligned_like; /* UNUSED */ cannam@167: x[0] = vec_extract(v,0); cannam@167: x[ovs] = vec_extract(v,1); cannam@167: } cannam@167: # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ cannam@167: #endif cannam@167: cannam@167: static inline V VBYI(V x) cannam@167: { cannam@167: /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(), cannam@167: but gcc and xlc treat the permutation bits differently, and cannam@167: gcc-6 seems to generate incorrect code when using cannam@167: __builtin_crypto_vpermxor() (i.e., VBYI() works for a small cannam@167: test case but fails in the large). cannam@167: cannam@167: Punt on vpermxor() for now and do the simple thing. cannam@167: */ cannam@167: return FLIP_RI(VCONJ(x)); cannam@167: } cannam@167: cannam@167: /* FMA support */ cannam@167: #define VFMA(a, b, c) vec_madd(a,b,c) cannam@167: #define VFNMS(a, b, c) vec_nmsub(a,b,c) cannam@167: #define VFMS(a, b, c) vec_msub(a,b,c) cannam@167: #define VFMAI(b, c) VADD(c, VBYI(b)) cannam@167: #define VFNMSI(b, c) VSUB(c, VBYI(b)) cannam@167: #define VFMACONJ(b,c) VADD(VCONJ(b),c) cannam@167: #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) cannam@167: #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) cannam@167: cannam@167: static inline V VZMUL(V tx, V sr) cannam@167: { cannam@167: V tr = VDUPL(tx); cannam@167: V ti = VDUPH(tx); cannam@167: tr = VMUL(sr, tr); cannam@167: sr = VBYI(sr); cannam@167: return VFMA(ti, sr, tr); cannam@167: } cannam@167: cannam@167: static inline V VZMULJ(V tx, V sr) cannam@167: { cannam@167: V tr = VDUPL(tx); cannam@167: V ti = VDUPH(tx); cannam@167: tr = VMUL(sr, tr); cannam@167: sr = VBYI(sr); cannam@167: return VFNMS(ti, sr, tr); cannam@167: } cannam@167: cannam@167: static inline V VZMULI(V tx, V sr) cannam@167: { cannam@167: V tr = VDUPL(tx); cannam@167: V ti = VDUPH(tx); cannam@167: ti = VMUL(ti, sr); cannam@167: sr = VBYI(sr); cannam@167: return VFMS(tr, sr, ti); cannam@167: } cannam@167: cannam@167: static inline V VZMULIJ(V tx, V sr) cannam@167: { cannam@167: V tr = VDUPL(tx); cannam@167: V ti = VDUPH(tx); cannam@167: ti = VMUL(ti, sr); cannam@167: sr = VBYI(sr); cannam@167: return VFMA(tr, sr, ti); cannam@167: } cannam@167: cannam@167: /* twiddle storage #1: compact, slower */ cannam@167: #ifdef FFTW_SINGLE cannam@167: # define VTW1(v,x) \ cannam@167: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} cannam@167: static inline V BYTW1(const R *t, V sr) cannam@167: { cannam@167: V tx = LDA(t,0,t); cannam@167: V tr = UNPCKH(tx, tx); cannam@167: V ti = UNPCKL(tx, tx); cannam@167: tr = VMUL(tr, sr); cannam@167: sr = VBYI(sr); cannam@167: return VFMA(ti, sr, tr); cannam@167: } cannam@167: static inline V BYTWJ1(const R *t, V sr) cannam@167: { cannam@167: V tx = LDA(t,0,t); cannam@167: V tr = UNPCKH(tx, tx); cannam@167: V ti = UNPCKL(tx, tx); cannam@167: tr = VMUL(tr, sr); cannam@167: sr = VBYI(sr); cannam@167: return VFNMS(ti, sr, tr); cannam@167: } cannam@167: #else /* !FFTW_SINGLE */ cannam@167: # define VTW1(v,x) {TW_CEXP, v, x} cannam@167: static inline V BYTW1(const R *t, V sr) cannam@167: { cannam@167: V tx = LD(t, 1, t); cannam@167: return VZMUL(tx, sr); cannam@167: } cannam@167: static inline V BYTWJ1(const R *t, V sr) cannam@167: { cannam@167: V tx = LD(t, 1, t); cannam@167: return VZMULJ(tx, sr); cannam@167: } cannam@167: #endif cannam@167: #define TWVL1 (VL) cannam@167: cannam@167: /* twiddle storage #2: twice the space, faster (when in cache) */ cannam@167: #ifdef FFTW_SINGLE cannam@167: # define VTW2(v,x) \ cannam@167: {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ cannam@167: {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} cannam@167: #else /* !FFTW_SINGLE */ cannam@167: # define VTW2(v,x) \ cannam@167: {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} cannam@167: #endif cannam@167: #define TWVL2 (2 * VL) cannam@167: static inline V BYTW2(const R *t, V sr) cannam@167: { cannam@167: V si = FLIP_RI(sr); cannam@167: V ti = LDA(t+2*VL,0,t); cannam@167: V tt = VMUL(ti, si); cannam@167: V tr = LDA(t,0,t); cannam@167: return VFMA(tr, sr, tt); cannam@167: } cannam@167: static inline V BYTWJ2(const R *t, V sr) cannam@167: { cannam@167: V si = FLIP_RI(sr); cannam@167: V tr = LDA(t,0,t); cannam@167: V tt = VMUL(tr, sr); cannam@167: V ti = LDA(t+2*VL,0,t); cannam@167: return VFNMS(ti, si, tt); cannam@167: } cannam@167: cannam@167: /* twiddle storage #3 */ cannam@167: #ifdef FFTW_SINGLE cannam@167: # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} cannam@167: # define TWVL3 (VL) cannam@167: #else cannam@167: # define VTW3(v,x) VTW1(v,x) cannam@167: # define TWVL3 TWVL1 cannam@167: #endif cannam@167: cannam@167: /* twiddle storage for split arrays */ cannam@167: #ifdef FFTW_SINGLE cannam@167: # define VTWS(v,x) \ cannam@167: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ cannam@167: {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} cannam@167: #else cannam@167: # define VTWS(v,x) \ cannam@167: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} cannam@167: #endif cannam@167: #define TWVLS (2 * VL) cannam@167: cannam@167: #define VLEAVE() /* nothing */ cannam@167: cannam@167: #include "simd-common.h"