annotate src/fftw-3.3.8/rdft/simd/common/hc2cfdftv_8.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include rdft/simd/hc2cfv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 41 FP additions, 40 FP multiplications,
cannam@167 32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
cannam@167 33 * 52 stack variables, 2 constants, and 16 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cfv.h"
cannam@167 36
cannam@167 37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@167 44 V T8, Tt, TG, TF, TD, TC, Tn, Tu, T3, Tc, Tl, Ts, T7, Ta, Th;
cannam@167 45 V Tq, T1, T2, Tb, Tj, Tk, Ti, Tr, T5, T6, T4, T9, Tf, Tg, Te;
cannam@167 46 V Tp, Td, Tm, Tw, Tx, To, Tv, TM, TN, TK, TL, TA, TB, Ty, Tz;
cannam@167 47 V TI, TJ, TE, TH;
cannam@167 48 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 49 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 50 T3 = VFMACONJ(T2, T1);
cannam@167 51 Tb = LDW(&(W[0]));
cannam@167 52 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
cannam@167 53 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 54 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 55 Ti = LDW(&(W[TWVL * 12]));
cannam@167 56 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
cannam@167 57 Tr = LDW(&(W[TWVL * 10]));
cannam@167 58 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
cannam@167 59 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 60 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 61 T4 = LDW(&(W[TWVL * 6]));
cannam@167 62 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
cannam@167 63 T9 = LDW(&(W[TWVL * 8]));
cannam@167 64 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
cannam@167 65 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 66 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 67 Te = LDW(&(W[TWVL * 4]));
cannam@167 68 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
cannam@167 69 Tp = LDW(&(W[TWVL * 2]));
cannam@167 70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
cannam@167 71 T8 = VSUB(T3, T7);
cannam@167 72 Tt = VSUB(Tq, Ts);
cannam@167 73 TG = VADD(Th, Tl);
cannam@167 74 TF = VADD(Tc, Ta);
cannam@167 75 TD = VADD(Tq, Ts);
cannam@167 76 TC = VADD(T3, T7);
cannam@167 77 Td = VSUB(Ta, Tc);
cannam@167 78 Tm = VSUB(Th, Tl);
cannam@167 79 Tn = VADD(Td, Tm);
cannam@167 80 Tu = VSUB(Tm, Td);
cannam@167 81 To = VFMA(LDK(KP707106781), Tn, T8);
cannam@167 82 Tv = VFNMS(LDK(KP707106781), Tu, Tt);
cannam@167 83 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
cannam@167 84 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
cannam@167 85 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
cannam@167 86 ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
cannam@167 87 TK = VADD(TC, TD);
cannam@167 88 TL = VADD(TF, TG);
cannam@167 89 TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
cannam@167 90 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
cannam@167 91 ST(&(Rp[0]), TM, ms, &(Rp[0]));
cannam@167 92 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@167 93 Ty = VFNMS(LDK(KP707106781), Tn, T8);
cannam@167 94 Tz = VFMA(LDK(KP707106781), Tu, Tt);
cannam@167 95 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
cannam@167 96 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
cannam@167 97 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
cannam@167 98 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
cannam@167 99 TE = VSUB(TC, TD);
cannam@167 100 TH = VSUB(TF, TG);
cannam@167 101 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
cannam@167 102 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
cannam@167 103 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
cannam@167 104 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
cannam@167 105 }
cannam@167 106 }
cannam@167 107 VLEAVE();
cannam@167 108 }
cannam@167 109
cannam@167 110 static const tw_instr twinstr[] = {
cannam@167 111 VTW(1, 1),
cannam@167 112 VTW(1, 2),
cannam@167 113 VTW(1, 3),
cannam@167 114 VTW(1, 4),
cannam@167 115 VTW(1, 5),
cannam@167 116 VTW(1, 6),
cannam@167 117 VTW(1, 7),
cannam@167 118 {TW_NEXT, VL, 0}
cannam@167 119 };
cannam@167 120
cannam@167 121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
cannam@167 122
cannam@167 123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
cannam@167 124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
cannam@167 125 }
cannam@167 126 #else
cannam@167 127
cannam@167 128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include rdft/simd/hc2cfv.h */
cannam@167 129
cannam@167 130 /*
cannam@167 131 * This function contains 41 FP additions, 23 FP multiplications,
cannam@167 132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
cannam@167 133 * 57 stack variables, 3 constants, and 16 memory accesses
cannam@167 134 */
cannam@167 135 #include "rdft/simd/hc2cfv.h"
cannam@167 136
cannam@167 137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 138 {
cannam@167 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
cannam@167 141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 142 {
cannam@167 143 INT m;
cannam@167 144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@167 145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
cannam@167 146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
cannam@167 147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
cannam@167 148 V TL, TP, TH, TJ, TM, TR, TN, TQ;
cannam@167 149 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 151 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 152 T3 = VCONJ(T2);
cannam@167 153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 154 T8 = VCONJ(T7);
cannam@167 155 T4 = VADD(T1, T3);
cannam@167 156 T5 = LDW(&(W[TWVL * 6]));
cannam@167 157 T9 = VZMULJ(T5, VADD(T6, T8));
cannam@167 158 Ta = VADD(T4, T9);
cannam@167 159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
cannam@167 160 Tn = LDW(&(W[0]));
cannam@167 161 To = VZMULIJ(Tn, VSUB(T3, T1));
cannam@167 162 Tp = LDW(&(W[TWVL * 8]));
cannam@167 163 Tq = VZMULIJ(Tp, VSUB(T8, T6));
cannam@167 164 Tr = VADD(To, Tq);
cannam@167 165 TF = VSUB(To, Tq);
cannam@167 166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 169 Te = VCONJ(Td);
cannam@167 170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 171 Tj = VCONJ(Ti);
cannam@167 172 Tb = LDW(&(W[TWVL * 2]));
cannam@167 173 Tf = VZMULJ(Tb, VADD(Tc, Te));
cannam@167 174 Tg = LDW(&(W[TWVL * 10]));
cannam@167 175 Tk = VZMULJ(Tg, VADD(Th, Tj));
cannam@167 176 Tl = VADD(Tf, Tk);
cannam@167 177 TK = VSUB(Tf, Tk);
cannam@167 178 Ts = LDW(&(W[TWVL * 4]));
cannam@167 179 Tt = VZMULIJ(Ts, VSUB(Te, Tc));
cannam@167 180 Tu = LDW(&(W[TWVL * 12]));
cannam@167 181 Tv = VZMULIJ(Tu, VSUB(Tj, Th));
cannam@167 182 Tw = VADD(Tt, Tv);
cannam@167 183 TG = VSUB(Tv, Tt);
cannam@167 184 Tm = VADD(Ta, Tl);
cannam@167 185 Tx = VADD(Tr, Tw);
cannam@167 186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
cannam@167 187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
cannam@167 188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
cannam@167 189 ST(&(Rp[0]), Tz, ms, &(Rp[0]));
cannam@167 190 TA = VSUB(Ta, Tl);
cannam@167 191 TB = VBYI(VSUB(Tw, Tr));
cannam@167 192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
cannam@167 193 TD = VMUL(LDK(KP500000000), VADD(TA, TB));
cannam@167 194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
cannam@167 195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
cannam@167 196 TH = VMUL(LDK(KP353553390), VADD(TF, TG));
cannam@167 197 TI = VADD(TE, TH);
cannam@167 198 TO = VSUB(TE, TH);
cannam@167 199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
cannam@167 200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
cannam@167 201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
cannam@167 202 TM = VCONJ(VSUB(TI, TL));
cannam@167 203 ST(&(Rm[0]), TM, -ms, &(Rm[0]));
cannam@167 204 TR = VADD(TO, TP);
cannam@167 205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
cannam@167 206 TN = VADD(TI, TL);
cannam@167 207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
cannam@167 208 TQ = VCONJ(VSUB(TO, TP));
cannam@167 209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
cannam@167 210 }
cannam@167 211 }
cannam@167 212 VLEAVE();
cannam@167 213 }
cannam@167 214
cannam@167 215 static const tw_instr twinstr[] = {
cannam@167 216 VTW(1, 1),
cannam@167 217 VTW(1, 2),
cannam@167 218 VTW(1, 3),
cannam@167 219 VTW(1, 4),
cannam@167 220 VTW(1, 5),
cannam@167 221 VTW(1, 6),
cannam@167 222 VTW(1, 7),
cannam@167 223 {TW_NEXT, VL, 0}
cannam@167 224 };
cannam@167 225
cannam@167 226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
cannam@167 227
cannam@167 228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
cannam@167 229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
cannam@167 230 }
cannam@167 231 #endif