annotate src/fftw-3.3.8/rdft/simd/common/hc2cbdftv_12.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:08:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 71 FP additions, 51 FP multiplications,
cannam@167 32 * (or, 45 additions, 25 multiplications, 26 fused multiply/add),
cannam@167 33 * 56 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/simd/hc2cbv.h"
cannam@167 36
cannam@167 37 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
cannam@167 44 V Tk, Tw, Td, TA, T11, T1f, TF, TP, Tt, TB, TY, T1e;
cannam@167 45 {
cannam@167 46 V T2, Tm, T7, T8, Tp, Tq, T5, Tu, Tg, Tr, Tj, Tn, Tb, Tv, T3;
cannam@167 47 V T4, Te, Tf, Th, Ti, T9, Ta, T6, Tc, TZ, T10, TD, TE, To, Ts;
cannam@167 48 V TW, TX;
cannam@167 49 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 50 Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 51 T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 52 T8 = VCONJ(T7);
cannam@167 53 Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 54 Tq = VCONJ(Tp);
cannam@167 55 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 56 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 57 T5 = VFMACONJ(T4, T3);
cannam@167 58 Tu = VFNMSCONJ(T4, T3);
cannam@167 59 Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 60 Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 61 Tg = VSUB(Te, Tf);
cannam@167 62 Tr = VADD(Te, Tf);
cannam@167 63 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 64 Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 65 Tj = VSUB(Th, Ti);
cannam@167 66 Tn = VADD(Ti, Th);
cannam@167 67 T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 68 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 69 Tb = VFMACONJ(Ta, T9);
cannam@167 70 Tv = VFMSCONJ(Ta, T9);
cannam@167 71 Tk = VFMACONJ(Tj, Tg);
cannam@167 72 Tw = VSUB(Tu, Tv);
cannam@167 73 T6 = VFNMS(LDK(KP500000000), T5, T2);
cannam@167 74 Tc = VFNMS(LDK(KP500000000), Tb, T8);
cannam@167 75 Td = VSUB(T6, Tc);
cannam@167 76 TA = VADD(T6, Tc);
cannam@167 77 TZ = VFMACONJ(Tn, Tm);
cannam@167 78 T10 = VFMACONJ(Tp, Tr);
cannam@167 79 T11 = VSUB(TZ, T10);
cannam@167 80 T1f = VADD(TZ, T10);
cannam@167 81 TD = VFNMSCONJ(Tj, Tg);
cannam@167 82 TE = VADD(Tu, Tv);
cannam@167 83 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
cannam@167 84 TP = VMUL(LDK(KP866025403), VADD(TE, TD));
cannam@167 85 To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm);
cannam@167 86 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
cannam@167 87 Tt = VSUB(To, Ts);
cannam@167 88 TB = VADD(To, Ts);
cannam@167 89 TW = VADD(T2, T5);
cannam@167 90 TX = VFMACONJ(T7, Tb);
cannam@167 91 TY = VSUB(TW, TX);
cannam@167 92 T1e = VADD(TW, TX);
cannam@167 93 }
cannam@167 94 {
cannam@167 95 V T1l, T12, TG, TU, Ty, T1k, TV, TC, Tz, TT, Tl, Tx, T1, T1j, TH;
cannam@167 96 V TI, T1n, T1m, T14, T13, T18, T1g, TQ, T16, TM, T1c, T17, T1d, TO, TN;
cannam@167 97 V T15, TK, TL, TJ, T1b, TR, TS, T1i, T1h, T1a, T19;
cannam@167 98 T1l = VADD(T1e, T1f);
cannam@167 99 TV = LDW(&(W[TWVL * 4]));
cannam@167 100 T12 = VZMULI(TV, VFNMSI(T11, TY));
cannam@167 101 TC = VSUB(TA, TB);
cannam@167 102 Tz = LDW(&(W[TWVL * 18]));
cannam@167 103 TG = VZMUL(Tz, VFNMSI(TF, TC));
cannam@167 104 TT = LDW(&(W[TWVL * 2]));
cannam@167 105 TU = VZMUL(TT, VFMAI(TF, TC));
cannam@167 106 Tl = VFMA(LDK(KP866025403), Tk, Td);
cannam@167 107 Tx = VFMA(LDK(KP866025403), Tw, Tt);
cannam@167 108 T1 = LDW(&(W[TWVL * 20]));
cannam@167 109 Ty = VZMULI(T1, VFNMSI(Tx, Tl));
cannam@167 110 T1j = LDW(&(W[0]));
cannam@167 111 T1k = VZMULI(T1j, VFMAI(Tx, Tl));
cannam@167 112 TH = VADD(Ty, TG);
cannam@167 113 ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)]));
cannam@167 114 TI = VCONJ(VSUB(TG, Ty));
cannam@167 115 ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)]));
cannam@167 116 T1n = VCONJ(VSUB(T1l, T1k));
cannam@167 117 ST(&(Rm[0]), T1n, -ms, &(Rm[0]));
cannam@167 118 T1m = VADD(T1k, T1l);
cannam@167 119 ST(&(Rp[0]), T1m, ms, &(Rp[0]));
cannam@167 120 T14 = VADD(TU, T12);
cannam@167 121 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
cannam@167 122 T13 = VCONJ(VSUB(TU, T12));
cannam@167 123 ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)]));
cannam@167 124 T17 = LDW(&(W[TWVL * 16]));
cannam@167 125 T18 = VZMULI(T17, VFMAI(T11, TY));
cannam@167 126 T1d = LDW(&(W[TWVL * 10]));
cannam@167 127 T1g = VZMUL(T1d, VSUB(T1e, T1f));
cannam@167 128 TO = VADD(TA, TB);
cannam@167 129 TN = LDW(&(W[TWVL * 6]));
cannam@167 130 TQ = VZMUL(TN, VFMAI(TP, TO));
cannam@167 131 T15 = LDW(&(W[TWVL * 14]));
cannam@167 132 T16 = VZMUL(T15, VFNMSI(TP, TO));
cannam@167 133 TK = VFNMS(LDK(KP866025403), Tk, Td);
cannam@167 134 TL = VFNMS(LDK(KP866025403), Tw, Tt);
cannam@167 135 TJ = LDW(&(W[TWVL * 8]));
cannam@167 136 TM = VZMULI(TJ, VFMAI(TL, TK));
cannam@167 137 T1b = LDW(&(W[TWVL * 12]));
cannam@167 138 T1c = VZMULI(T1b, VFNMSI(TL, TK));
cannam@167 139 TR = VADD(TM, TQ);
cannam@167 140 ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0]));
cannam@167 141 TS = VCONJ(VSUB(TQ, TM));
cannam@167 142 ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0]));
cannam@167 143 T1i = VCONJ(VSUB(T1g, T1c));
cannam@167 144 ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)]));
cannam@167 145 T1h = VADD(T1c, T1g);
cannam@167 146 ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)]));
cannam@167 147 T1a = VADD(T16, T18);
cannam@167 148 ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0]));
cannam@167 149 T19 = VCONJ(VSUB(T16, T18));
cannam@167 150 ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
cannam@167 151 }
cannam@167 152 }
cannam@167 153 }
cannam@167 154 VLEAVE();
cannam@167 155 }
cannam@167 156
cannam@167 157 static const tw_instr twinstr[] = {
cannam@167 158 VTW(1, 1),
cannam@167 159 VTW(1, 2),
cannam@167 160 VTW(1, 3),
cannam@167 161 VTW(1, 4),
cannam@167 162 VTW(1, 5),
cannam@167 163 VTW(1, 6),
cannam@167 164 VTW(1, 7),
cannam@167 165 VTW(1, 8),
cannam@167 166 VTW(1, 9),
cannam@167 167 VTW(1, 10),
cannam@167 168 VTW(1, 11),
cannam@167 169 {TW_NEXT, VL, 0}
cannam@167 170 };
cannam@167 171
cannam@167 172 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} };
cannam@167 173
cannam@167 174 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
cannam@167 175 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
cannam@167 176 }
cannam@167 177 #else
cannam@167 178
cannam@167 179 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include rdft/simd/hc2cbv.h */
cannam@167 180
cannam@167 181 /*
cannam@167 182 * This function contains 71 FP additions, 30 FP multiplications,
cannam@167 183 * (or, 67 additions, 26 multiplications, 4 fused multiply/add),
cannam@167 184 * 90 stack variables, 2 constants, and 24 memory accesses
cannam@167 185 */
cannam@167 186 #include "rdft/simd/hc2cbv.h"
cannam@167 187
cannam@167 188 static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 189 {
cannam@167 190 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 191 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 192 {
cannam@167 193 INT m;
cannam@167 194 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
cannam@167 195 V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3;
cannam@167 196 V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti;
cannam@167 197 V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12;
cannam@167 198 T2 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@167 199 T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 200 T9 = VCONJ(T8);
cannam@167 201 T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@167 202 T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 203 T5 = VCONJ(T4);
cannam@167 204 T6 = VADD(T3, T5);
cannam@167 205 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@167 206 Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@167 207 Tb = VCONJ(Ta);
cannam@167 208 Td = VADD(Tb, Tc);
cannam@167 209 TY = VADD(T2, T6);
cannam@167 210 TZ = VADD(T9, Td);
cannam@167 211 T7 = VFNMS(LDK(KP500000000), T6, T2);
cannam@167 212 Te = VFNMS(LDK(KP500000000), Td, T9);
cannam@167 213 Tf = VSUB(T7, Te);
cannam@167 214 TC = VADD(T7, Te);
cannam@167 215 To = VSUB(T3, T5);
cannam@167 216 Tp = VSUB(Tb, Tc);
cannam@167 217 Tq = VMUL(LDK(KP866025403), VSUB(To, Tp));
cannam@167 218 TG = VADD(To, Tp);
cannam@167 219 Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 220 Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@167 221 Tv = VCONJ(Tu);
cannam@167 222 Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@167 223 Th = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@167 224 Ti = VCONJ(VSUB(Tg, Th));
cannam@167 225 Ts = VCONJ(VADD(Tg, Th));
cannam@167 226 Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 227 Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
cannam@167 228 Tl = VSUB(Tj, Tk);
cannam@167 229 Tw = VADD(Tj, Tk);
cannam@167 230 Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl));
cannam@167 231 TF = VADD(Ti, Tl);
cannam@167 232 Tt = VFNMS(LDK(KP500000000), Ts, Tr);
cannam@167 233 Tx = VFNMS(LDK(KP500000000), Tw, Tv);
cannam@167 234 Ty = VSUB(Tt, Tx);
cannam@167 235 TD = VADD(Tt, Tx);
cannam@167 236 T11 = VADD(Tr, Ts);
cannam@167 237 T12 = VADD(Tv, Tw);
cannam@167 238 T13 = VBYI(VSUB(T11, T12));
cannam@167 239 T1h = VADD(T11, T12);
cannam@167 240 {
cannam@167 241 V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10;
cannam@167 242 V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE;
cannam@167 243 V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15;
cannam@167 244 T1g = VADD(TY, TZ);
cannam@167 245 T1n = VADD(T1g, T1h);
cannam@167 246 T1f = LDW(&(W[TWVL * 10]));
cannam@167 247 T1i = VZMUL(T1f, VSUB(T1g, T1h));
cannam@167 248 T10 = VSUB(TY, TZ);
cannam@167 249 TX = LDW(&(W[TWVL * 4]));
cannam@167 250 T14 = VZMULI(TX, VSUB(T10, T13));
cannam@167 251 T19 = LDW(&(W[TWVL * 16]));
cannam@167 252 T1a = VZMULI(T19, VADD(T10, T13));
cannam@167 253 Tn = VSUB(Tf, Tm);
cannam@167 254 Tz = VBYI(VADD(Tq, Ty));
cannam@167 255 T1 = LDW(&(W[TWVL * 20]));
cannam@167 256 TA = VZMULI(T1, VSUB(Tn, Tz));
cannam@167 257 T1l = LDW(&(W[0]));
cannam@167 258 T1m = VZMULI(T1l, VADD(Tn, Tz));
cannam@167 259 TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF)));
cannam@167 260 TR = VADD(TC, TD);
cannam@167 261 TP = LDW(&(W[TWVL * 6]));
cannam@167 262 TS = VZMUL(TP, VADD(TQ, TR));
cannam@167 263 T17 = LDW(&(W[TWVL * 14]));
cannam@167 264 T18 = VZMUL(T17, VSUB(TR, TQ));
cannam@167 265 TM = VADD(Tf, Tm);
cannam@167 266 TN = VBYI(VSUB(Ty, Tq));
cannam@167 267 TL = LDW(&(W[TWVL * 8]));
cannam@167 268 TO = VZMULI(TL, VADD(TM, TN));
cannam@167 269 T1d = LDW(&(W[TWVL * 12]));
cannam@167 270 T1e = VZMULI(T1d, VSUB(TM, TN));
cannam@167 271 TE = VSUB(TC, TD);
cannam@167 272 TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG)));
cannam@167 273 TB = LDW(&(W[TWVL * 18]));
cannam@167 274 TI = VZMUL(TB, VSUB(TE, TH));
cannam@167 275 TV = LDW(&(W[TWVL * 2]));
cannam@167 276 TW = VZMUL(TV, VADD(TH, TE));
cannam@167 277 TJ = VADD(TA, TI);
cannam@167 278 ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)]));
cannam@167 279 T1p = VCONJ(VSUB(T1n, T1m));
cannam@167 280 ST(&(Rm[0]), T1p, -ms, &(Rm[0]));
cannam@167 281 T1k = VCONJ(VSUB(T1i, T1e));
cannam@167 282 ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
cannam@167 283 TT = VADD(TO, TS);
cannam@167 284 ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0]));
cannam@167 285 T1o = VADD(T1m, T1n);
cannam@167 286 ST(&(Rp[0]), T1o, ms, &(Rp[0]));
cannam@167 287 TK = VCONJ(VSUB(TI, TA));
cannam@167 288 ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)]));
cannam@167 289 TU = VCONJ(VSUB(TS, TO));
cannam@167 290 ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
cannam@167 291 T1j = VADD(T1e, T1i);
cannam@167 292 ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
cannam@167 293 T1b = VCONJ(VSUB(T18, T1a));
cannam@167 294 ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0]));
cannam@167 295 T16 = VADD(TW, T14);
cannam@167 296 ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
cannam@167 297 T1c = VADD(T18, T1a);
cannam@167 298 ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0]));
cannam@167 299 T15 = VCONJ(VSUB(TW, T14));
cannam@167 300 ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)]));
cannam@167 301 }
cannam@167 302 }
cannam@167 303 }
cannam@167 304 VLEAVE();
cannam@167 305 }
cannam@167 306
cannam@167 307 static const tw_instr twinstr[] = {
cannam@167 308 VTW(1, 1),
cannam@167 309 VTW(1, 2),
cannam@167 310 VTW(1, 3),
cannam@167 311 VTW(1, 4),
cannam@167 312 VTW(1, 5),
cannam@167 313 VTW(1, 6),
cannam@167 314 VTW(1, 7),
cannam@167 315 VTW(1, 8),
cannam@167 316 VTW(1, 9),
cannam@167 317 VTW(1, 10),
cannam@167 318 VTW(1, 11),
cannam@167 319 {TW_NEXT, VL, 0}
cannam@167 320 };
cannam@167 321
cannam@167 322 static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} };
cannam@167 323
cannam@167 324 void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
cannam@167 325 X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
cannam@167 326 }
cannam@167 327 #endif