annotate src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_6.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:07:57 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 58 FP additions, 32 FP multiplications,
cannam@167 32 * (or, 36 additions, 10 multiplications, 22 fused multiply/add),
cannam@167 33 * 34 stack variables, 2 constants, and 24 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/scalar/hc2cb.h"
cannam@167 36
cannam@167 37 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT m;
cannam@167 43 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 44 E Tp, TD, Tj, TV, Tq, Tr, TG, TP, T4, Ts, TQ, Tb, Tc, TA, TU;
cannam@167 45 {
cannam@167 46 E Tf, TF, Ti, TE, Td, Te;
cannam@167 47 Td = Ip[WS(rs, 1)];
cannam@167 48 Te = Im[WS(rs, 1)];
cannam@167 49 Tf = Td - Te;
cannam@167 50 TF = Te + Td;
cannam@167 51 {
cannam@167 52 E Tn, To, Tg, Th;
cannam@167 53 Tn = Ip[0];
cannam@167 54 To = Im[WS(rs, 2)];
cannam@167 55 Tp = Tn - To;
cannam@167 56 TD = Tn + To;
cannam@167 57 Tg = Ip[WS(rs, 2)];
cannam@167 58 Th = Im[0];
cannam@167 59 Ti = Tg - Th;
cannam@167 60 TE = Tg + Th;
cannam@167 61 }
cannam@167 62 Tj = Tf - Ti;
cannam@167 63 TV = TF + TE;
cannam@167 64 Tq = Tf + Ti;
cannam@167 65 Tr = FNMS(KP500000000, Tq, Tp);
cannam@167 66 TG = TE - TF;
cannam@167 67 TP = FNMS(KP500000000, TG, TD);
cannam@167 68 }
cannam@167 69 {
cannam@167 70 E Tw, Ta, Ty, T7, Tx, T2, T3, Tz;
cannam@167 71 T2 = Rp[0];
cannam@167 72 T3 = Rm[WS(rs, 2)];
cannam@167 73 T4 = T2 + T3;
cannam@167 74 Tw = T2 - T3;
cannam@167 75 {
cannam@167 76 E T8, T9, T5, T6;
cannam@167 77 T8 = Rm[WS(rs, 1)];
cannam@167 78 T9 = Rp[WS(rs, 1)];
cannam@167 79 Ta = T8 + T9;
cannam@167 80 Ty = T8 - T9;
cannam@167 81 T5 = Rp[WS(rs, 2)];
cannam@167 82 T6 = Rm[0];
cannam@167 83 T7 = T5 + T6;
cannam@167 84 Tx = T5 - T6;
cannam@167 85 }
cannam@167 86 Ts = T7 - Ta;
cannam@167 87 TQ = Tx - Ty;
cannam@167 88 Tb = T7 + Ta;
cannam@167 89 Tc = FNMS(KP500000000, Tb, T4);
cannam@167 90 Tz = Tx + Ty;
cannam@167 91 TA = Tw + Tz;
cannam@167 92 TU = FNMS(KP500000000, Tz, Tw);
cannam@167 93 }
cannam@167 94 {
cannam@167 95 E TN, TY, TR, TW, TS, TZ, TO, TX, T10, TT;
cannam@167 96 TN = T4 + Tb;
cannam@167 97 TY = Tp + Tq;
cannam@167 98 TR = FMA(KP866025403, TQ, TP);
cannam@167 99 TW = FNMS(KP866025403, TV, TU);
cannam@167 100 TO = W[0];
cannam@167 101 TS = TO * TR;
cannam@167 102 TZ = TO * TW;
cannam@167 103 TT = W[1];
cannam@167 104 TX = FMA(TT, TW, TS);
cannam@167 105 T10 = FNMS(TT, TR, TZ);
cannam@167 106 Rp[0] = TN - TX;
cannam@167 107 Ip[0] = TY + T10;
cannam@167 108 Rm[0] = TN + TX;
cannam@167 109 Im[0] = T10 - TY;
cannam@167 110 }
cannam@167 111 {
cannam@167 112 E Tt, TH, Tv, TB, TC, TL, T1, Tl, Tm, TJ, Tk;
cannam@167 113 Tt = FNMS(KP866025403, Ts, Tr);
cannam@167 114 TH = TD + TG;
cannam@167 115 Tv = W[4];
cannam@167 116 TB = Tv * TA;
cannam@167 117 TC = W[5];
cannam@167 118 TL = TC * TA;
cannam@167 119 Tk = FNMS(KP866025403, Tj, Tc);
cannam@167 120 T1 = W[3];
cannam@167 121 Tl = T1 * Tk;
cannam@167 122 Tm = W[2];
cannam@167 123 TJ = Tm * Tk;
cannam@167 124 {
cannam@167 125 E Tu, TI, TK, TM;
cannam@167 126 Tu = FMA(Tm, Tt, Tl);
cannam@167 127 TI = FNMS(TC, TH, TB);
cannam@167 128 Ip[WS(rs, 1)] = Tu + TI;
cannam@167 129 Im[WS(rs, 1)] = TI - Tu;
cannam@167 130 TK = FNMS(T1, Tt, TJ);
cannam@167 131 TM = FMA(Tv, TH, TL);
cannam@167 132 Rp[WS(rs, 1)] = TK - TM;
cannam@167 133 Rm[WS(rs, 1)] = TK + TM;
cannam@167 134 }
cannam@167 135 }
cannam@167 136 {
cannam@167 137 E T15, T11, T13, T14, T1d, T18, T1b, T19, T1f, T12, T17;
cannam@167 138 T15 = FMA(KP866025403, Ts, Tr);
cannam@167 139 T12 = FMA(KP866025403, Tj, Tc);
cannam@167 140 T11 = W[6];
cannam@167 141 T13 = T11 * T12;
cannam@167 142 T14 = W[7];
cannam@167 143 T1d = T14 * T12;
cannam@167 144 T18 = FNMS(KP866025403, TQ, TP);
cannam@167 145 T1b = FMA(KP866025403, TV, TU);
cannam@167 146 T17 = W[8];
cannam@167 147 T19 = T17 * T18;
cannam@167 148 T1f = T17 * T1b;
cannam@167 149 {
cannam@167 150 E T16, T1e, T1c, T1g, T1a;
cannam@167 151 T16 = FNMS(T14, T15, T13);
cannam@167 152 T1e = FMA(T11, T15, T1d);
cannam@167 153 T1a = W[9];
cannam@167 154 T1c = FMA(T1a, T1b, T19);
cannam@167 155 T1g = FNMS(T1a, T18, T1f);
cannam@167 156 Rp[WS(rs, 2)] = T16 - T1c;
cannam@167 157 Ip[WS(rs, 2)] = T1e + T1g;
cannam@167 158 Rm[WS(rs, 2)] = T16 + T1c;
cannam@167 159 Im[WS(rs, 2)] = T1g - T1e;
cannam@167 160 }
cannam@167 161 }
cannam@167 162 }
cannam@167 163 }
cannam@167 164 }
cannam@167 165
cannam@167 166 static const tw_instr twinstr[] = {
cannam@167 167 {TW_FULL, 1, 6},
cannam@167 168 {TW_NEXT, 1, 0}
cannam@167 169 };
cannam@167 170
cannam@167 171 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {36, 10, 22, 0} };
cannam@167 172
cannam@167 173 void X(codelet_hc2cbdft_6) (planner *p) {
cannam@167 174 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
cannam@167 175 }
cannam@167 176 #else
cannam@167 177
cannam@167 178 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cbdft_6 -include rdft/scalar/hc2cb.h */
cannam@167 179
cannam@167 180 /*
cannam@167 181 * This function contains 58 FP additions, 28 FP multiplications,
cannam@167 182 * (or, 44 additions, 14 multiplications, 14 fused multiply/add),
cannam@167 183 * 29 stack variables, 2 constants, and 24 memory accesses
cannam@167 184 */
cannam@167 185 #include "rdft/scalar/hc2cb.h"
cannam@167 186
cannam@167 187 static void hc2cbdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 188 {
cannam@167 189 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 190 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 191 {
cannam@167 192 INT m;
cannam@167 193 for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@167 194 E T4, Tv, Tr, TL, Tb, Tc, Ty, TP, To, TB, Tj, TQ, Tp, Tq, TE;
cannam@167 195 E TM;
cannam@167 196 {
cannam@167 197 E Ta, Tx, T7, Tw, T2, T3;
cannam@167 198 T2 = Rp[0];
cannam@167 199 T3 = Rm[WS(rs, 2)];
cannam@167 200 T4 = T2 + T3;
cannam@167 201 Tv = T2 - T3;
cannam@167 202 {
cannam@167 203 E T8, T9, T5, T6;
cannam@167 204 T8 = Rm[WS(rs, 1)];
cannam@167 205 T9 = Rp[WS(rs, 1)];
cannam@167 206 Ta = T8 + T9;
cannam@167 207 Tx = T8 - T9;
cannam@167 208 T5 = Rp[WS(rs, 2)];
cannam@167 209 T6 = Rm[0];
cannam@167 210 T7 = T5 + T6;
cannam@167 211 Tw = T5 - T6;
cannam@167 212 }
cannam@167 213 Tr = KP866025403 * (T7 - Ta);
cannam@167 214 TL = KP866025403 * (Tw - Tx);
cannam@167 215 Tb = T7 + Ta;
cannam@167 216 Tc = FNMS(KP500000000, Tb, T4);
cannam@167 217 Ty = Tw + Tx;
cannam@167 218 TP = FNMS(KP500000000, Ty, Tv);
cannam@167 219 }
cannam@167 220 {
cannam@167 221 E Tf, TC, Ti, TD, Td, Te;
cannam@167 222 Td = Ip[WS(rs, 1)];
cannam@167 223 Te = Im[WS(rs, 1)];
cannam@167 224 Tf = Td - Te;
cannam@167 225 TC = Te + Td;
cannam@167 226 {
cannam@167 227 E Tm, Tn, Tg, Th;
cannam@167 228 Tm = Ip[0];
cannam@167 229 Tn = Im[WS(rs, 2)];
cannam@167 230 To = Tm - Tn;
cannam@167 231 TB = Tm + Tn;
cannam@167 232 Tg = Ip[WS(rs, 2)];
cannam@167 233 Th = Im[0];
cannam@167 234 Ti = Tg - Th;
cannam@167 235 TD = Tg + Th;
cannam@167 236 }
cannam@167 237 Tj = KP866025403 * (Tf - Ti);
cannam@167 238 TQ = KP866025403 * (TC + TD);
cannam@167 239 Tp = Tf + Ti;
cannam@167 240 Tq = FNMS(KP500000000, Tp, To);
cannam@167 241 TE = TC - TD;
cannam@167 242 TM = FMA(KP500000000, TE, TB);
cannam@167 243 }
cannam@167 244 {
cannam@167 245 E TJ, TT, TS, TU;
cannam@167 246 TJ = T4 + Tb;
cannam@167 247 TT = To + Tp;
cannam@167 248 {
cannam@167 249 E TN, TR, TK, TO;
cannam@167 250 TN = TL + TM;
cannam@167 251 TR = TP - TQ;
cannam@167 252 TK = W[0];
cannam@167 253 TO = W[1];
cannam@167 254 TS = FMA(TK, TN, TO * TR);
cannam@167 255 TU = FNMS(TO, TN, TK * TR);
cannam@167 256 }
cannam@167 257 Rp[0] = TJ - TS;
cannam@167 258 Ip[0] = TT + TU;
cannam@167 259 Rm[0] = TJ + TS;
cannam@167 260 Im[0] = TU - TT;
cannam@167 261 }
cannam@167 262 {
cannam@167 263 E TZ, T15, T14, T16;
cannam@167 264 {
cannam@167 265 E TW, TY, TV, TX;
cannam@167 266 TW = Tc + Tj;
cannam@167 267 TY = Tr + Tq;
cannam@167 268 TV = W[6];
cannam@167 269 TX = W[7];
cannam@167 270 TZ = FNMS(TX, TY, TV * TW);
cannam@167 271 T15 = FMA(TX, TW, TV * TY);
cannam@167 272 }
cannam@167 273 {
cannam@167 274 E T11, T13, T10, T12;
cannam@167 275 T11 = TM - TL;
cannam@167 276 T13 = TP + TQ;
cannam@167 277 T10 = W[8];
cannam@167 278 T12 = W[9];
cannam@167 279 T14 = FMA(T10, T11, T12 * T13);
cannam@167 280 T16 = FNMS(T12, T11, T10 * T13);
cannam@167 281 }
cannam@167 282 Rp[WS(rs, 2)] = TZ - T14;
cannam@167 283 Ip[WS(rs, 2)] = T15 + T16;
cannam@167 284 Rm[WS(rs, 2)] = TZ + T14;
cannam@167 285 Im[WS(rs, 2)] = T16 - T15;
cannam@167 286 }
cannam@167 287 {
cannam@167 288 E Tt, TH, TG, TI;
cannam@167 289 {
cannam@167 290 E Tk, Ts, T1, Tl;
cannam@167 291 Tk = Tc - Tj;
cannam@167 292 Ts = Tq - Tr;
cannam@167 293 T1 = W[3];
cannam@167 294 Tl = W[2];
cannam@167 295 Tt = FMA(T1, Tk, Tl * Ts);
cannam@167 296 TH = FNMS(T1, Ts, Tl * Tk);
cannam@167 297 }
cannam@167 298 {
cannam@167 299 E Tz, TF, Tu, TA;
cannam@167 300 Tz = Tv + Ty;
cannam@167 301 TF = TB - TE;
cannam@167 302 Tu = W[4];
cannam@167 303 TA = W[5];
cannam@167 304 TG = FNMS(TA, TF, Tu * Tz);
cannam@167 305 TI = FMA(TA, Tz, Tu * TF);
cannam@167 306 }
cannam@167 307 Ip[WS(rs, 1)] = Tt + TG;
cannam@167 308 Rp[WS(rs, 1)] = TH - TI;
cannam@167 309 Im[WS(rs, 1)] = TG - Tt;
cannam@167 310 Rm[WS(rs, 1)] = TH + TI;
cannam@167 311 }
cannam@167 312 }
cannam@167 313 }
cannam@167 314 }
cannam@167 315
cannam@167 316 static const tw_instr twinstr[] = {
cannam@167 317 {TW_FULL, 1, 6},
cannam@167 318 {TW_NEXT, 1, 0}
cannam@167 319 };
cannam@167 320
cannam@167 321 static const hc2c_desc desc = { 6, "hc2cbdft_6", twinstr, &GENUS, {44, 14, 14, 0} };
cannam@167 322
cannam@167 323 void X(codelet_hc2cbdft_6) (planner *p) {
cannam@167 324 X(khc2c_register) (p, hc2cbdft_6, &desc, HC2C_VIA_DFT);
cannam@167 325 }
cannam@167 326 #endif