annotate src/fftw-3.3.8/rdft/problem2.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 #include "dft/dft.h"
cannam@167 23 #include "rdft/rdft.h"
cannam@167 24 #include <stddef.h>
cannam@167 25
cannam@167 26 static void destroy(problem *ego_)
cannam@167 27 {
cannam@167 28 problem_rdft2 *ego = (problem_rdft2 *) ego_;
cannam@167 29 X(tensor_destroy2)(ego->vecsz, ego->sz);
cannam@167 30 X(ifree)(ego_);
cannam@167 31 }
cannam@167 32
cannam@167 33 static void hash(const problem *p_, md5 *m)
cannam@167 34 {
cannam@167 35 const problem_rdft2 *p = (const problem_rdft2 *) p_;
cannam@167 36 X(md5puts)(m, "rdft2");
cannam@167 37 X(md5int)(m, p->r0 == p->cr);
cannam@167 38 X(md5INT)(m, p->r1 - p->r0);
cannam@167 39 X(md5INT)(m, p->ci - p->cr);
cannam@167 40 X(md5int)(m, X(ialignment_of)(p->r0));
cannam@167 41 X(md5int)(m, X(ialignment_of)(p->r1));
cannam@167 42 X(md5int)(m, X(ialignment_of)(p->cr));
cannam@167 43 X(md5int)(m, X(ialignment_of)(p->ci));
cannam@167 44 X(md5int)(m, p->kind);
cannam@167 45 X(tensor_md5)(m, p->sz);
cannam@167 46 X(tensor_md5)(m, p->vecsz);
cannam@167 47 }
cannam@167 48
cannam@167 49 static void print(const problem *ego_, printer *p)
cannam@167 50 {
cannam@167 51 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
cannam@167 52 p->print(p, "(rdft2 %d %d %T %T)",
cannam@167 53 (int)(ego->cr == ego->r0),
cannam@167 54 (int)(ego->kind),
cannam@167 55 ego->sz,
cannam@167 56 ego->vecsz);
cannam@167 57 }
cannam@167 58
cannam@167 59 static void recur(const iodim *dims, int rnk, R *I0, R *I1)
cannam@167 60 {
cannam@167 61 if (rnk == RNK_MINFTY)
cannam@167 62 return;
cannam@167 63 else if (rnk == 0)
cannam@167 64 I0[0] = K(0.0);
cannam@167 65 else if (rnk > 0) {
cannam@167 66 INT i, n = dims[0].n, is = dims[0].is;
cannam@167 67
cannam@167 68 if (rnk == 1) {
cannam@167 69 for (i = 0; i < n - 1; i += 2) {
cannam@167 70 *I0 = *I1 = K(0.0);
cannam@167 71 I0 += is; I1 += is;
cannam@167 72 }
cannam@167 73 if (i < n)
cannam@167 74 *I0 = K(0.0);
cannam@167 75 } else {
cannam@167 76 for (i = 0; i < n; ++i)
cannam@167 77 recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
cannam@167 78 }
cannam@167 79 }
cannam@167 80 }
cannam@167 81
cannam@167 82 static void vrecur(const iodim *vdims, int vrnk,
cannam@167 83 const iodim *dims, int rnk, R *I0, R *I1)
cannam@167 84 {
cannam@167 85 if (vrnk == RNK_MINFTY)
cannam@167 86 return;
cannam@167 87 else if (vrnk == 0)
cannam@167 88 recur(dims, rnk, I0, I1);
cannam@167 89 else if (vrnk > 0) {
cannam@167 90 INT i, n = vdims[0].n, is = vdims[0].is;
cannam@167 91
cannam@167 92 for (i = 0; i < n; ++i)
cannam@167 93 vrecur(vdims + 1, vrnk - 1,
cannam@167 94 dims, rnk, I0 + i * is, I1 + i * is);
cannam@167 95 }
cannam@167 96 }
cannam@167 97
cannam@167 98 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
cannam@167 99 {
cannam@167 100 switch (kind) {
cannam@167 101 case R2HC:
cannam@167 102 case HC2R:
cannam@167 103 return (real_n / 2) + 1;
cannam@167 104 case R2HCII:
cannam@167 105 case HC2RIII:
cannam@167 106 return (real_n + 1) / 2;
cannam@167 107 default:
cannam@167 108 /* can't happen */
cannam@167 109 A(0);
cannam@167 110 return 0;
cannam@167 111 }
cannam@167 112 }
cannam@167 113
cannam@167 114 static void zero(const problem *ego_)
cannam@167 115 {
cannam@167 116 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
cannam@167 117 if (R2HC_KINDP(ego->kind)) {
cannam@167 118 /* FIXME: can we avoid the double recursion somehow? */
cannam@167 119 vrecur(ego->vecsz->dims, ego->vecsz->rnk,
cannam@167 120 ego->sz->dims, ego->sz->rnk,
cannam@167 121 UNTAINT(ego->r0), UNTAINT(ego->r1));
cannam@167 122 } else {
cannam@167 123 tensor *sz;
cannam@167 124 tensor *sz2 = X(tensor_copy)(ego->sz);
cannam@167 125 int rnk = sz2->rnk;
cannam@167 126 if (rnk > 0) /* ~half as many complex outputs */
cannam@167 127 sz2->dims[rnk-1].n =
cannam@167 128 X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
cannam@167 129 sz = X(tensor_append)(ego->vecsz, sz2);
cannam@167 130 X(tensor_destroy)(sz2);
cannam@167 131 X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
cannam@167 132 X(tensor_destroy)(sz);
cannam@167 133 }
cannam@167 134 }
cannam@167 135
cannam@167 136 static const problem_adt padt =
cannam@167 137 {
cannam@167 138 PROBLEM_RDFT2,
cannam@167 139 hash,
cannam@167 140 zero,
cannam@167 141 print,
cannam@167 142 destroy
cannam@167 143 };
cannam@167 144
cannam@167 145 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
cannam@167 146 R *r0, R *r1, R *cr, R *ci,
cannam@167 147 rdft_kind kind)
cannam@167 148 {
cannam@167 149 problem_rdft2 *ego;
cannam@167 150
cannam@167 151 A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
cannam@167 152 A(X(tensor_kosherp)(sz));
cannam@167 153 A(X(tensor_kosherp)(vecsz));
cannam@167 154 A(FINITE_RNK(sz->rnk));
cannam@167 155
cannam@167 156 /* require in-place problems to use r0 == cr */
cannam@167 157 if (UNTAINT(r0) == UNTAINT(ci))
cannam@167 158 return X(mkproblem_unsolvable)();
cannam@167 159
cannam@167 160 /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
cannam@167 161 only if odd elements exist, which requires compressing the
cannam@167 162 tensors first */
cannam@167 163
cannam@167 164 if (UNTAINT(r0) == UNTAINT(cr))
cannam@167 165 r0 = cr = JOIN_TAINT(r0, cr);
cannam@167 166
cannam@167 167 ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
cannam@167 168
cannam@167 169 if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
cannam@167 170 tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
cannam@167 171 tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
cannam@167 172 tensor *szcc = X(tensor_compress)(szc);
cannam@167 173 if (szcc->rnk > 0)
cannam@167 174 ego->sz = X(tensor_append)(szcc, szr);
cannam@167 175 else
cannam@167 176 ego->sz = X(tensor_compress)(szr);
cannam@167 177 X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
cannam@167 178 } else {
cannam@167 179 ego->sz = X(tensor_compress)(sz);
cannam@167 180 }
cannam@167 181 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
cannam@167 182 ego->r0 = r0;
cannam@167 183 ego->r1 = r1;
cannam@167 184 ego->cr = cr;
cannam@167 185 ego->ci = ci;
cannam@167 186 ego->kind = kind;
cannam@167 187
cannam@167 188 A(FINITE_RNK(ego->sz->rnk));
cannam@167 189 return &(ego->super);
cannam@167 190
cannam@167 191 }
cannam@167 192
cannam@167 193 /* Same as X(mkproblem_rdft2), but also destroy input tensors. */
cannam@167 194 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
cannam@167 195 R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
cannam@167 196 {
cannam@167 197 problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
cannam@167 198 X(tensor_destroy2)(vecsz, sz);
cannam@167 199 return p;
cannam@167 200 }
cannam@167 201
cannam@167 202 /* Same as X(mkproblem_rdft2_d), but with only one R pointer.
cannam@167 203 Used by the API. */
cannam@167 204 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
cannam@167 205 R *r0, R *cr, R *ci, rdft_kind kind)
cannam@167 206 {
cannam@167 207 problem *p;
cannam@167 208 int rnk = sz->rnk;
cannam@167 209 R *r1;
cannam@167 210
cannam@167 211 if (rnk == 0)
cannam@167 212 r1 = r0;
cannam@167 213 else if (R2HC_KINDP(kind)) {
cannam@167 214 r1 = r0 + sz->dims[rnk-1].is;
cannam@167 215 sz->dims[rnk-1].is *= 2;
cannam@167 216 } else {
cannam@167 217 r1 = r0 + sz->dims[rnk-1].os;
cannam@167 218 sz->dims[rnk-1].os *= 2;
cannam@167 219 }
cannam@167 220
cannam@167 221 p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
cannam@167 222 X(tensor_destroy2)(vecsz, sz);
cannam@167 223 return p;
cannam@167 224 }