annotate src/fftw-3.3.8/rdft/problem.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 #include "rdft/rdft.h"
cannam@167 23 #include <stddef.h>
cannam@167 24
cannam@167 25 static void destroy(problem *ego_)
cannam@167 26 {
cannam@167 27 problem_rdft *ego = (problem_rdft *) ego_;
cannam@167 28 #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
cannam@167 29 X(ifree0)(ego->kind);
cannam@167 30 #endif
cannam@167 31 X(tensor_destroy2)(ego->vecsz, ego->sz);
cannam@167 32 X(ifree)(ego_);
cannam@167 33 }
cannam@167 34
cannam@167 35 static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
cannam@167 36 {
cannam@167 37 int i;
cannam@167 38 for (i = 0; i < rnk; ++i)
cannam@167 39 X(md5int)(m, kind[i]);
cannam@167 40 }
cannam@167 41
cannam@167 42 static void hash(const problem *p_, md5 *m)
cannam@167 43 {
cannam@167 44 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 45 X(md5puts)(m, "rdft");
cannam@167 46 X(md5int)(m, p->I == p->O);
cannam@167 47 kind_hash(m, p->kind, p->sz->rnk);
cannam@167 48 X(md5int)(m, X(ialignment_of)(p->I));
cannam@167 49 X(md5int)(m, X(ialignment_of)(p->O));
cannam@167 50 X(tensor_md5)(m, p->sz);
cannam@167 51 X(tensor_md5)(m, p->vecsz);
cannam@167 52 }
cannam@167 53
cannam@167 54 static void recur(const iodim *dims, int rnk, R *I)
cannam@167 55 {
cannam@167 56 if (rnk == RNK_MINFTY)
cannam@167 57 return;
cannam@167 58 else if (rnk == 0)
cannam@167 59 I[0] = K(0.0);
cannam@167 60 else if (rnk > 0) {
cannam@167 61 INT i, n = dims[0].n, is = dims[0].is;
cannam@167 62
cannam@167 63 if (rnk == 1) {
cannam@167 64 /* this case is redundant but faster */
cannam@167 65 for (i = 0; i < n; ++i)
cannam@167 66 I[i * is] = K(0.0);
cannam@167 67 } else {
cannam@167 68 for (i = 0; i < n; ++i)
cannam@167 69 recur(dims + 1, rnk - 1, I + i * is);
cannam@167 70 }
cannam@167 71 }
cannam@167 72 }
cannam@167 73
cannam@167 74 void X(rdft_zerotens)(tensor *sz, R *I)
cannam@167 75 {
cannam@167 76 recur(sz->dims, sz->rnk, I);
cannam@167 77 }
cannam@167 78
cannam@167 79 #define KSTR_LEN 8
cannam@167 80
cannam@167 81 const char *X(rdft_kind_str)(rdft_kind kind)
cannam@167 82 {
cannam@167 83 static const char kstr[][KSTR_LEN] = {
cannam@167 84 "r2hc", "r2hc01", "r2hc10", "r2hc11",
cannam@167 85 "hc2r", "hc2r01", "hc2r10", "hc2r11",
cannam@167 86 "dht",
cannam@167 87 "redft00", "redft01", "redft10", "redft11",
cannam@167 88 "rodft00", "rodft01", "rodft10", "rodft11"
cannam@167 89 };
cannam@167 90 A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
cannam@167 91 return kstr[kind];
cannam@167 92 }
cannam@167 93
cannam@167 94 static void print(const problem *ego_, printer *p)
cannam@167 95 {
cannam@167 96 const problem_rdft *ego = (const problem_rdft *) ego_;
cannam@167 97 int i;
cannam@167 98 p->print(p, "(rdft %d %D %T %T",
cannam@167 99 X(ialignment_of)(ego->I),
cannam@167 100 (INT)(ego->O - ego->I),
cannam@167 101 ego->sz,
cannam@167 102 ego->vecsz);
cannam@167 103 for (i = 0; i < ego->sz->rnk; ++i)
cannam@167 104 p->print(p, " %d", (int)ego->kind[i]);
cannam@167 105 p->print(p, ")");
cannam@167 106 }
cannam@167 107
cannam@167 108 static void zero(const problem *ego_)
cannam@167 109 {
cannam@167 110 const problem_rdft *ego = (const problem_rdft *) ego_;
cannam@167 111 tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
cannam@167 112 X(rdft_zerotens)(sz, UNTAINT(ego->I));
cannam@167 113 X(tensor_destroy)(sz);
cannam@167 114 }
cannam@167 115
cannam@167 116 static const problem_adt padt =
cannam@167 117 {
cannam@167 118 PROBLEM_RDFT,
cannam@167 119 hash,
cannam@167 120 zero,
cannam@167 121 print,
cannam@167 122 destroy
cannam@167 123 };
cannam@167 124
cannam@167 125 /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
cannam@167 126 eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
cannam@167 127 and suchlike from normalization and phases, although in principle
cannam@167 128 these constant factors from different dimensions could be combined. */
cannam@167 129 static int nontrivial(const iodim *d, rdft_kind kind)
cannam@167 130 {
cannam@167 131 return (d->n > 1 || kind == R2HC11 || kind == HC2R11
cannam@167 132 || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
cannam@167 133 }
cannam@167 134
cannam@167 135 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
cannam@167 136 R *I, R *O, const rdft_kind *kind)
cannam@167 137 {
cannam@167 138 problem_rdft *ego;
cannam@167 139 int rnk = sz->rnk;
cannam@167 140 int i;
cannam@167 141
cannam@167 142 A(X(tensor_kosherp)(sz));
cannam@167 143 A(X(tensor_kosherp)(vecsz));
cannam@167 144 A(FINITE_RNK(sz->rnk));
cannam@167 145
cannam@167 146 if (UNTAINT(I) == UNTAINT(O))
cannam@167 147 I = O = JOIN_TAINT(I, O);
cannam@167 148
cannam@167 149 if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
cannam@167 150 return X(mkproblem_unsolvable)();
cannam@167 151
cannam@167 152 for (i = rnk = 0; i < sz->rnk; ++i) {
cannam@167 153 A(sz->dims[i].n > 0);
cannam@167 154 if (nontrivial(sz->dims + i, kind[i]))
cannam@167 155 ++rnk;
cannam@167 156 }
cannam@167 157
cannam@167 158 #if defined(STRUCT_HACK_KR)
cannam@167 159 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
cannam@167 160 + sizeof(rdft_kind)
cannam@167 161 * (rnk > 0 ? rnk - 1u : 0u), &padt);
cannam@167 162 #elif defined(STRUCT_HACK_C99)
cannam@167 163 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
cannam@167 164 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
cannam@167 165 #else
cannam@167 166 ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
cannam@167 167 ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
cannam@167 168 #endif
cannam@167 169
cannam@167 170 /* do compression and sorting as in X(tensor_compress), but take
cannam@167 171 transform kind into account (sigh) */
cannam@167 172 ego->sz = X(mktensor)(rnk);
cannam@167 173 for (i = rnk = 0; i < sz->rnk; ++i) {
cannam@167 174 if (nontrivial(sz->dims + i, kind[i])) {
cannam@167 175 ego->kind[rnk] = kind[i];
cannam@167 176 ego->sz->dims[rnk++] = sz->dims[i];
cannam@167 177 }
cannam@167 178 }
cannam@167 179 for (i = 0; i + 1 < rnk; ++i) {
cannam@167 180 int j;
cannam@167 181 for (j = i + 1; j < rnk; ++j)
cannam@167 182 if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
cannam@167 183 iodim dswap;
cannam@167 184 rdft_kind kswap;
cannam@167 185 dswap = ego->sz->dims[i];
cannam@167 186 ego->sz->dims[i] = ego->sz->dims[j];
cannam@167 187 ego->sz->dims[j] = dswap;
cannam@167 188 kswap = ego->kind[i];
cannam@167 189 ego->kind[i] = ego->kind[j];
cannam@167 190 ego->kind[j] = kswap;
cannam@167 191 }
cannam@167 192 }
cannam@167 193
cannam@167 194 for (i = 0; i < rnk; ++i)
cannam@167 195 if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
cannam@167 196 || ego->kind[i] == DHT
cannam@167 197 || ego->kind[i] == HC2R))
cannam@167 198 ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
cannam@167 199
cannam@167 200 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
cannam@167 201 ego->I = I;
cannam@167 202 ego->O = O;
cannam@167 203
cannam@167 204 A(FINITE_RNK(ego->sz->rnk));
cannam@167 205
cannam@167 206 return &(ego->super);
cannam@167 207 }
cannam@167 208
cannam@167 209 /* Same as X(mkproblem_rdft), but also destroy input tensors. */
cannam@167 210 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
cannam@167 211 R *I, R *O, const rdft_kind *kind)
cannam@167 212 {
cannam@167 213 problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
cannam@167 214 X(tensor_destroy2)(vecsz, sz);
cannam@167 215 return p;
cannam@167 216 }
cannam@167 217
cannam@167 218 /* As above, but for rnk <= 1 only and takes a scalar kind parameter */
cannam@167 219 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
cannam@167 220 R *I, R *O, rdft_kind kind)
cannam@167 221 {
cannam@167 222 A(sz->rnk <= 1);
cannam@167 223 return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
cannam@167 224 }
cannam@167 225
cannam@167 226 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
cannam@167 227 R *I, R *O, rdft_kind kind)
cannam@167 228 {
cannam@167 229 A(sz->rnk <= 1);
cannam@167 230 return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
cannam@167 231 }
cannam@167 232
cannam@167 233 /* create a zero-dimensional problem */
cannam@167 234 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
cannam@167 235 {
cannam@167 236 return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
cannam@167 237 (const rdft_kind *)0);
cannam@167 238 }