annotate src/fftw-3.3.8/rdft/dht-r2hc.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 /* Solve a DHT problem (Discrete Hartley Transform) via post-processing
cannam@167 23 of an R2HC problem. */
cannam@167 24
cannam@167 25 #include "rdft/rdft.h"
cannam@167 26
cannam@167 27 typedef struct {
cannam@167 28 solver super;
cannam@167 29 } S;
cannam@167 30
cannam@167 31 typedef struct {
cannam@167 32 plan_rdft super;
cannam@167 33 plan *cld;
cannam@167 34 INT os;
cannam@167 35 INT n;
cannam@167 36 } P;
cannam@167 37
cannam@167 38 static void apply(const plan *ego_, R *I, R *O)
cannam@167 39 {
cannam@167 40 const P *ego = (const P *) ego_;
cannam@167 41 INT os = ego->os;
cannam@167 42 INT i, n = ego->n;
cannam@167 43
cannam@167 44 {
cannam@167 45 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 46 cld->apply((plan *) cld, I, O);
cannam@167 47 }
cannam@167 48
cannam@167 49 for (i = 1; i < n - i; ++i) {
cannam@167 50 E a, b;
cannam@167 51 a = O[os * i];
cannam@167 52 b = O[os * (n - i)];
cannam@167 53 #if FFT_SIGN == -1
cannam@167 54 O[os * i] = a - b;
cannam@167 55 O[os * (n - i)] = a + b;
cannam@167 56 #else
cannam@167 57 O[os * i] = a + b;
cannam@167 58 O[os * (n - i)] = a - b;
cannam@167 59 #endif
cannam@167 60 }
cannam@167 61 }
cannam@167 62
cannam@167 63 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 64 {
cannam@167 65 P *ego = (P *) ego_;
cannam@167 66 X(plan_awake)(ego->cld, wakefulness);
cannam@167 67 }
cannam@167 68
cannam@167 69 static void destroy(plan *ego_)
cannam@167 70 {
cannam@167 71 P *ego = (P *) ego_;
cannam@167 72 X(plan_destroy_internal)(ego->cld);
cannam@167 73 }
cannam@167 74
cannam@167 75 static void print(const plan *ego_, printer *p)
cannam@167 76 {
cannam@167 77 const P *ego = (const P *) ego_;
cannam@167 78 p->print(p, "(dht-r2hc-%D%(%p%))", ego->n, ego->cld);
cannam@167 79 }
cannam@167 80
cannam@167 81 static int applicable0(const problem *p_, const planner *plnr)
cannam@167 82 {
cannam@167 83 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 84 return (1
cannam@167 85 && !NO_DHT_R2HCP(plnr)
cannam@167 86 && p->sz->rnk == 1
cannam@167 87 && p->vecsz->rnk == 0
cannam@167 88 && p->kind[0] == DHT
cannam@167 89 );
cannam@167 90 }
cannam@167 91
cannam@167 92 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@167 93 {
cannam@167 94 UNUSED(ego);
cannam@167 95 return (!NO_SLOWP(plnr) && applicable0(p, plnr));
cannam@167 96 }
cannam@167 97
cannam@167 98 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 99 {
cannam@167 100 P *pln;
cannam@167 101 const problem_rdft *p;
cannam@167 102 plan *cld;
cannam@167 103
cannam@167 104 static const plan_adt padt = {
cannam@167 105 X(rdft_solve), awake, print, destroy
cannam@167 106 };
cannam@167 107
cannam@167 108 if (!applicable(ego_, p_, plnr))
cannam@167 109 return (plan *)0;
cannam@167 110
cannam@167 111 p = (const problem_rdft *) p_;
cannam@167 112
cannam@167 113 /* NO_DHT_R2HC stops infinite loops with rdft-dht.c */
cannam@167 114 cld = X(mkplan_f_d)(plnr,
cannam@167 115 X(mkproblem_rdft_1)(p->sz, p->vecsz,
cannam@167 116 p->I, p->O, R2HC),
cannam@167 117 NO_DHT_R2HC, 0, 0);
cannam@167 118 if (!cld) return (plan *)0;
cannam@167 119
cannam@167 120 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@167 121
cannam@167 122 pln->n = p->sz->dims[0].n;
cannam@167 123 pln->os = p->sz->dims[0].os;
cannam@167 124 pln->cld = cld;
cannam@167 125
cannam@167 126 pln->super.super.ops = cld->ops;
cannam@167 127 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
cannam@167 128 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
cannam@167 129
cannam@167 130 return &(pln->super.super);
cannam@167 131 }
cannam@167 132
cannam@167 133 /* constructor */
cannam@167 134 static solver *mksolver(void)
cannam@167 135 {
cannam@167 136 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 137 S *slv = MKSOLVER(S, &sadt);
cannam@167 138 return &(slv->super);
cannam@167 139 }
cannam@167 140
cannam@167 141 void X(dht_r2hc_register)(planner *p)
cannam@167 142 {
cannam@167 143 REGISTER_SOLVER(p, mksolver());
cannam@167 144 }