annotate src/fftw-3.3.8/rdft/buffered.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21
cannam@167 22 #include "rdft/rdft.h"
cannam@167 23
cannam@167 24 typedef struct {
cannam@167 25 solver super;
cannam@167 26 size_t maxnbuf_ndx;
cannam@167 27 } S;
cannam@167 28
cannam@167 29 static const INT maxnbufs[] = { 8, 256 };
cannam@167 30
cannam@167 31 typedef struct {
cannam@167 32 plan_rdft super;
cannam@167 33
cannam@167 34 plan *cld, *cldcpy, *cldrest;
cannam@167 35 INT n, vl, nbuf, bufdist;
cannam@167 36 INT ivs_by_nbuf, ovs_by_nbuf;
cannam@167 37 } P;
cannam@167 38
cannam@167 39 /* transform a vector input with the help of bufs */
cannam@167 40 static void apply(const plan *ego_, R *I, R *O)
cannam@167 41 {
cannam@167 42 const P *ego = (const P *) ego_;
cannam@167 43 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 44 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
cannam@167 45 plan_rdft *cldrest;
cannam@167 46 INT i, vl = ego->vl, nbuf = ego->nbuf;
cannam@167 47 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
cannam@167 48 R *bufs;
cannam@167 49
cannam@167 50 bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
cannam@167 51
cannam@167 52 for (i = nbuf; i <= vl; i += nbuf) {
cannam@167 53 /* transform to bufs: */
cannam@167 54 cld->apply((plan *) cld, I, bufs);
cannam@167 55 I += ivs_by_nbuf;
cannam@167 56
cannam@167 57 /* copy back */
cannam@167 58 cldcpy->apply((plan *) cldcpy, bufs, O);
cannam@167 59 O += ovs_by_nbuf;
cannam@167 60 }
cannam@167 61
cannam@167 62 X(ifree)(bufs);
cannam@167 63
cannam@167 64 /* Do the remaining transforms, if any: */
cannam@167 65 cldrest = (plan_rdft *) ego->cldrest;
cannam@167 66 cldrest->apply((plan *) cldrest, I, O);
cannam@167 67 }
cannam@167 68
cannam@167 69 /* for hc2r problems, copy the input into buffer, and then
cannam@167 70 transform buffer->output, which allows for destruction of the
cannam@167 71 buffer */
cannam@167 72 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@167 73 {
cannam@167 74 const P *ego = (const P *) ego_;
cannam@167 75 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@167 76 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
cannam@167 77 plan_rdft *cldrest;
cannam@167 78 INT i, vl = ego->vl, nbuf = ego->nbuf;
cannam@167 79 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
cannam@167 80 R *bufs;
cannam@167 81
cannam@167 82 bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
cannam@167 83
cannam@167 84 for (i = nbuf; i <= vl; i += nbuf) {
cannam@167 85 /* copy input into bufs: */
cannam@167 86 cldcpy->apply((plan *) cldcpy, I, bufs);
cannam@167 87 I += ivs_by_nbuf;
cannam@167 88
cannam@167 89 /* transform to output */
cannam@167 90 cld->apply((plan *) cld, bufs, O);
cannam@167 91 O += ovs_by_nbuf;
cannam@167 92 }
cannam@167 93
cannam@167 94 X(ifree)(bufs);
cannam@167 95
cannam@167 96 /* Do the remaining transforms, if any: */
cannam@167 97 cldrest = (plan_rdft *) ego->cldrest;
cannam@167 98 cldrest->apply((plan *) cldrest, I, O);
cannam@167 99 }
cannam@167 100
cannam@167 101
cannam@167 102 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 103 {
cannam@167 104 P *ego = (P *) ego_;
cannam@167 105
cannam@167 106 X(plan_awake)(ego->cld, wakefulness);
cannam@167 107 X(plan_awake)(ego->cldcpy, wakefulness);
cannam@167 108 X(plan_awake)(ego->cldrest, wakefulness);
cannam@167 109 }
cannam@167 110
cannam@167 111 static void destroy(plan *ego_)
cannam@167 112 {
cannam@167 113 P *ego = (P *) ego_;
cannam@167 114 X(plan_destroy_internal)(ego->cldrest);
cannam@167 115 X(plan_destroy_internal)(ego->cldcpy);
cannam@167 116 X(plan_destroy_internal)(ego->cld);
cannam@167 117 }
cannam@167 118
cannam@167 119 static void print(const plan *ego_, printer *p)
cannam@167 120 {
cannam@167 121 const P *ego = (const P *) ego_;
cannam@167 122 p->print(p, "(rdft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
cannam@167 123 ego->n, ego->nbuf,
cannam@167 124 ego->vl, ego->bufdist % ego->n,
cannam@167 125 ego->cld, ego->cldcpy, ego->cldrest);
cannam@167 126 }
cannam@167 127
cannam@167 128 static int applicable0(const S *ego, const problem *p_, const planner *plnr)
cannam@167 129 {
cannam@167 130 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 131 iodim *d = p->sz->dims;
cannam@167 132
cannam@167 133 if (1
cannam@167 134 && p->vecsz->rnk <= 1
cannam@167 135 && p->sz->rnk == 1
cannam@167 136 ) {
cannam@167 137 INT vl, ivs, ovs;
cannam@167 138 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
cannam@167 139
cannam@167 140 if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr))
cannam@167 141 return 0;
cannam@167 142
cannam@167 143 /* if this solver is redundant, in the sense that a solver
cannam@167 144 of lower index generates the same plan, then prune this
cannam@167 145 solver */
cannam@167 146 if (X(nbuf_redundant)(d[0].n, vl,
cannam@167 147 ego->maxnbuf_ndx,
cannam@167 148 maxnbufs, NELEM(maxnbufs)))
cannam@167 149 return 0;
cannam@167 150
cannam@167 151 if (p->I != p->O) {
cannam@167 152 if (p->kind[0] == HC2R) {
cannam@167 153 /* Allow HC2R problems only if the input is to be
cannam@167 154 preserved. This solver sets NO_DESTROY_INPUT,
cannam@167 155 which prevents infinite loops */
cannam@167 156 return (NO_DESTROY_INPUTP(plnr));
cannam@167 157 } else {
cannam@167 158 /*
cannam@167 159 In principle, the buffered transforms might be useful
cannam@167 160 when working out of place. However, in order to
cannam@167 161 prevent infinite loops in the planner, we require
cannam@167 162 that the output stride of the buffered transforms be
cannam@167 163 greater than 1.
cannam@167 164 */
cannam@167 165 return (d[0].os > 1);
cannam@167 166 }
cannam@167 167 }
cannam@167 168
cannam@167 169 /*
cannam@167 170 * If the problem is in place, the input/output strides must
cannam@167 171 * be the same or the whole thing must fit in the buffer.
cannam@167 172 */
cannam@167 173 if (X(tensor_inplace_strides2)(p->sz, p->vecsz))
cannam@167 174 return 1;
cannam@167 175
cannam@167 176 if (/* fits into buffer: */
cannam@167 177 ((p->vecsz->rnk == 0)
cannam@167 178 ||
cannam@167 179 (X(nbuf)(d[0].n, p->vecsz->dims[0].n,
cannam@167 180 maxnbufs[ego->maxnbuf_ndx])
cannam@167 181 == p->vecsz->dims[0].n)))
cannam@167 182 return 1;
cannam@167 183 }
cannam@167 184
cannam@167 185 return 0;
cannam@167 186 }
cannam@167 187
cannam@167 188 static int applicable(const S *ego, const problem *p_, const planner *plnr)
cannam@167 189 {
cannam@167 190 const problem_rdft *p;
cannam@167 191
cannam@167 192 if (NO_BUFFERINGP(plnr)) return 0;
cannam@167 193
cannam@167 194 if (!applicable0(ego, p_, plnr)) return 0;
cannam@167 195
cannam@167 196 p = (const problem_rdft *) p_;
cannam@167 197 if (p->kind[0] == HC2R) {
cannam@167 198 if (NO_UGLYP(plnr)) {
cannam@167 199 /* UGLY if in-place and too big, since the problem
cannam@167 200 could be solved via transpositions */
cannam@167 201 if (p->I == p->O && X(toobig)(p->sz->dims[0].n))
cannam@167 202 return 0;
cannam@167 203 }
cannam@167 204 } else {
cannam@167 205 if (NO_UGLYP(plnr)) {
cannam@167 206 if (p->I != p->O) return 0;
cannam@167 207 if (X(toobig)(p->sz->dims[0].n)) return 0;
cannam@167 208 }
cannam@167 209 }
cannam@167 210 return 1;
cannam@167 211 }
cannam@167 212
cannam@167 213 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 214 {
cannam@167 215 P *pln;
cannam@167 216 const S *ego = (const S *)ego_;
cannam@167 217 plan *cld = (plan *) 0;
cannam@167 218 plan *cldcpy = (plan *) 0;
cannam@167 219 plan *cldrest = (plan *) 0;
cannam@167 220 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 221 R *bufs = (R *) 0;
cannam@167 222 INT nbuf = 0, bufdist, n, vl;
cannam@167 223 INT ivs, ovs;
cannam@167 224 int hc2rp;
cannam@167 225
cannam@167 226 static const plan_adt padt = {
cannam@167 227 X(rdft_solve), awake, print, destroy
cannam@167 228 };
cannam@167 229
cannam@167 230 if (!applicable(ego, p_, plnr))
cannam@167 231 goto nada;
cannam@167 232
cannam@167 233 n = X(tensor_sz)(p->sz);
cannam@167 234 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
cannam@167 235 hc2rp = (p->kind[0] == HC2R);
cannam@167 236
cannam@167 237 nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
cannam@167 238 bufdist = X(bufdist)(n, vl);
cannam@167 239 A(nbuf > 0);
cannam@167 240
cannam@167 241 /* initial allocation for the purpose of planning */
cannam@167 242 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
cannam@167 243
cannam@167 244 if (hc2rp) {
cannam@167 245 /* allow destruction of buffer */
cannam@167 246 cld = X(mkplan_f_d)(plnr,
cannam@167 247 X(mkproblem_rdft_d)(
cannam@167 248 X(mktensor_1d)(n, 1, p->sz->dims[0].os),
cannam@167 249 X(mktensor_1d)(nbuf, bufdist, ovs),
cannam@167 250 bufs, TAINT(p->O, ovs * nbuf), p->kind),
cannam@167 251 0, 0, NO_DESTROY_INPUT);
cannam@167 252 if (!cld) goto nada;
cannam@167 253
cannam@167 254 /* copying input into buffer buffer is a rank-0 transform: */
cannam@167 255 cldcpy = X(mkplan_d)(plnr,
cannam@167 256 X(mkproblem_rdft_0_d)(
cannam@167 257 X(mktensor_2d)(nbuf, ivs, bufdist,
cannam@167 258 n, p->sz->dims[0].is, 1),
cannam@167 259 TAINT(p->I, ivs * nbuf), bufs));
cannam@167 260 if (!cldcpy) goto nada;
cannam@167 261 } else {
cannam@167 262 /* allow destruction of input if problem is in place */
cannam@167 263 cld = X(mkplan_f_d)(plnr,
cannam@167 264 X(mkproblem_rdft_d)(
cannam@167 265 X(mktensor_1d)(n, p->sz->dims[0].is, 1),
cannam@167 266 X(mktensor_1d)(nbuf, ivs, bufdist),
cannam@167 267 TAINT(p->I, ivs * nbuf), bufs, p->kind),
cannam@167 268 0, 0, (p->I == p->O) ? NO_DESTROY_INPUT : 0);
cannam@167 269 if (!cld) goto nada;
cannam@167 270
cannam@167 271 /* copying back from the buffer is a rank-0 transform: */
cannam@167 272 cldcpy = X(mkplan_d)(plnr,
cannam@167 273 X(mkproblem_rdft_0_d)(
cannam@167 274 X(mktensor_2d)(nbuf, bufdist, ovs,
cannam@167 275 n, 1, p->sz->dims[0].os),
cannam@167 276 bufs, TAINT(p->O, ovs * nbuf)));
cannam@167 277 if (!cldcpy) goto nada;
cannam@167 278 }
cannam@167 279
cannam@167 280 /* deallocate buffers, let apply() allocate them for real */
cannam@167 281 X(ifree)(bufs);
cannam@167 282 bufs = 0;
cannam@167 283
cannam@167 284 /* plan the leftover transforms (cldrest): */
cannam@167 285 {
cannam@167 286 INT id = ivs * (nbuf * (vl / nbuf));
cannam@167 287 INT od = ovs * (nbuf * (vl / nbuf));
cannam@167 288 cldrest = X(mkplan_d)(plnr,
cannam@167 289 X(mkproblem_rdft_d)(
cannam@167 290 X(tensor_copy)(p->sz),
cannam@167 291 X(mktensor_1d)(vl % nbuf, ivs, ovs),
cannam@167 292 p->I + id, p->O + od, p->kind));
cannam@167 293 }
cannam@167 294 if (!cldrest) goto nada;
cannam@167 295
cannam@167 296 pln = MKPLAN_RDFT(P, &padt, hc2rp ? apply_hc2r : apply);
cannam@167 297 pln->cld = cld;
cannam@167 298 pln->cldcpy = cldcpy;
cannam@167 299 pln->cldrest = cldrest;
cannam@167 300 pln->n = n;
cannam@167 301 pln->vl = vl;
cannam@167 302 pln->ivs_by_nbuf = ivs * nbuf;
cannam@167 303 pln->ovs_by_nbuf = ovs * nbuf;
cannam@167 304
cannam@167 305 pln->nbuf = nbuf;
cannam@167 306 pln->bufdist = bufdist;
cannam@167 307
cannam@167 308 {
cannam@167 309 opcnt t;
cannam@167 310 X(ops_add)(&cld->ops, &cldcpy->ops, &t);
cannam@167 311 X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
cannam@167 312 }
cannam@167 313
cannam@167 314 return &(pln->super.super);
cannam@167 315
cannam@167 316 nada:
cannam@167 317 X(ifree0)(bufs);
cannam@167 318 X(plan_destroy_internal)(cldrest);
cannam@167 319 X(plan_destroy_internal)(cldcpy);
cannam@167 320 X(plan_destroy_internal)(cld);
cannam@167 321 return (plan *) 0;
cannam@167 322 }
cannam@167 323
cannam@167 324 static solver *mksolver(size_t maxnbuf_ndx)
cannam@167 325 {
cannam@167 326 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 327 S *slv = MKSOLVER(S, &sadt);
cannam@167 328 slv->maxnbuf_ndx = maxnbuf_ndx;
cannam@167 329 return &(slv->super);
cannam@167 330 }
cannam@167 331
cannam@167 332 void X(rdft_buffered_register)(planner *p)
cannam@167 333 {
cannam@167 334 size_t i;
cannam@167 335 for (i = 0; i < NELEM(maxnbufs); ++i)
cannam@167 336 REGISTER_SOLVER(p, mksolver(i));
cannam@167 337 }