annotate src/fftw-3.3.8/mpi/rdft2-rank-geq2-transposed.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed
cannam@167 22 across the first dimension only, and the output is transposed both
cannam@167 23 in data distribution and in ordering (for the first 2 dimensions).
cannam@167 24
cannam@167 25 Conversely, real-output (c2r) DFTs where the input is transposed.
cannam@167 26
cannam@167 27 We don't currently support transposed-input r2c or transposed-output
cannam@167 28 c2r transforms. */
cannam@167 29
cannam@167 30 #include "mpi-rdft2.h"
cannam@167 31 #include "mpi-transpose.h"
cannam@167 32 #include "rdft/rdft.h"
cannam@167 33 #include "dft/dft.h"
cannam@167 34
cannam@167 35 typedef struct {
cannam@167 36 solver super;
cannam@167 37 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@167 38 } S;
cannam@167 39
cannam@167 40 typedef struct {
cannam@167 41 plan_mpi_rdft2 super;
cannam@167 42
cannam@167 43 plan *cld1, *cldt, *cld2;
cannam@167 44 INT vn;
cannam@167 45 int preserve_input;
cannam@167 46 } P;
cannam@167 47
cannam@167 48 static void apply_r2c(const plan *ego_, R *I, R *O)
cannam@167 49 {
cannam@167 50 const P *ego = (const P *) ego_;
cannam@167 51 plan_rdft2 *cld1;
cannam@167 52 plan_dft *cld2;
cannam@167 53 plan_rdft *cldt;
cannam@167 54
cannam@167 55 /* RDFT2 local dimensions */
cannam@167 56 cld1 = (plan_rdft2 *) ego->cld1;
cannam@167 57 if (ego->preserve_input) {
cannam@167 58 cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
cannam@167 59 I = O;
cannam@167 60 }
cannam@167 61 else
cannam@167 62 cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);
cannam@167 63
cannam@167 64 /* global transpose */
cannam@167 65 cldt = (plan_rdft *) ego->cldt;
cannam@167 66 cldt->apply(ego->cldt, I, O);
cannam@167 67
cannam@167 68 /* DFT final local dimension */
cannam@167 69 cld2 = (plan_dft *) ego->cld2;
cannam@167 70 cld2->apply(ego->cld2, O, O+1, O, O+1);
cannam@167 71 }
cannam@167 72
cannam@167 73 static void apply_c2r(const plan *ego_, R *I, R *O)
cannam@167 74 {
cannam@167 75 const P *ego = (const P *) ego_;
cannam@167 76 plan_rdft2 *cld1;
cannam@167 77 plan_dft *cld2;
cannam@167 78 plan_rdft *cldt;
cannam@167 79
cannam@167 80 /* IDFT local dimensions */
cannam@167 81 cld2 = (plan_dft *) ego->cld2;
cannam@167 82 if (ego->preserve_input) {
cannam@167 83 cld2->apply(ego->cld2, I+1, I, O+1, O);
cannam@167 84 I = O;
cannam@167 85 }
cannam@167 86 else
cannam@167 87 cld2->apply(ego->cld2, I+1, I, I+1, I);
cannam@167 88
cannam@167 89 /* global transpose */
cannam@167 90 cldt = (plan_rdft *) ego->cldt;
cannam@167 91 cldt->apply(ego->cldt, I, O);
cannam@167 92
cannam@167 93 /* RDFT2 final local dimension */
cannam@167 94 cld1 = (plan_rdft2 *) ego->cld1;
cannam@167 95 cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
cannam@167 96 }
cannam@167 97
cannam@167 98 static int applicable(const S *ego, const problem *p_,
cannam@167 99 const planner *plnr)
cannam@167 100 {
cannam@167 101 const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
cannam@167 102 return (1
cannam@167 103 && p->sz->rnk > 1
cannam@167 104 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@167 105 && p->I != p->O))
cannam@167 106 && ((p->flags == TRANSPOSED_OUT && p->kind == R2HC
cannam@167 107 && XM(is_local_after)(1, p->sz, IB)
cannam@167 108 && XM(is_local_after)(2, p->sz, OB)
cannam@167 109 && XM(num_blocks)(p->sz->dims[0].n,
cannam@167 110 p->sz->dims[0].b[OB]) == 1)
cannam@167 111 ||
cannam@167 112 (p->flags == TRANSPOSED_IN && p->kind == HC2R
cannam@167 113 && XM(is_local_after)(1, p->sz, OB)
cannam@167 114 && XM(is_local_after)(2, p->sz, IB)
cannam@167 115 && XM(num_blocks)(p->sz->dims[0].n,
cannam@167 116 p->sz->dims[0].b[IB]) == 1))
cannam@167 117 && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
cannam@167 118 || !XM(rdft2_serial_applicable)(p))
cannam@167 119 );
cannam@167 120 }
cannam@167 121
cannam@167 122 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 123 {
cannam@167 124 P *ego = (P *) ego_;
cannam@167 125 X(plan_awake)(ego->cld1, wakefulness);
cannam@167 126 X(plan_awake)(ego->cldt, wakefulness);
cannam@167 127 X(plan_awake)(ego->cld2, wakefulness);
cannam@167 128 }
cannam@167 129
cannam@167 130 static void destroy(plan *ego_)
cannam@167 131 {
cannam@167 132 P *ego = (P *) ego_;
cannam@167 133 X(plan_destroy_internal)(ego->cld2);
cannam@167 134 X(plan_destroy_internal)(ego->cldt);
cannam@167 135 X(plan_destroy_internal)(ego->cld1);
cannam@167 136 }
cannam@167 137
cannam@167 138 static void print(const plan *ego_, printer *p)
cannam@167 139 {
cannam@167 140 const P *ego = (const P *) ego_;
cannam@167 141 p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))",
cannam@167 142 ego->preserve_input==2 ?"/p":"",
cannam@167 143 ego->cld1, ego->cldt, ego->cld2);
cannam@167 144 }
cannam@167 145
cannam@167 146 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 147 {
cannam@167 148 const S *ego = (const S *) ego_;
cannam@167 149 const problem_mpi_rdft2 *p;
cannam@167 150 P *pln;
cannam@167 151 plan *cld1 = 0, *cldt = 0, *cld2 = 0;
cannam@167 152 R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O;
cannam@167 153 tensor *sz;
cannam@167 154 int i, my_pe, n_pes;
cannam@167 155 INT nrest, n1, b1;
cannam@167 156 static const plan_adt padt = {
cannam@167 157 XM(rdft2_solve), awake, print, destroy
cannam@167 158 };
cannam@167 159 block_kind k1, k2;
cannam@167 160
cannam@167 161 UNUSED(ego);
cannam@167 162
cannam@167 163 if (!applicable(ego, p_, plnr))
cannam@167 164 return (plan *) 0;
cannam@167 165
cannam@167 166 p = (const problem_mpi_rdft2 *) p_;
cannam@167 167
cannam@167 168 I = p->I; O = p->O;
cannam@167 169 if (p->kind == R2HC) {
cannam@167 170 k1 = IB; k2 = OB;
cannam@167 171 r1 = (r0 = I) + p->vn;
cannam@167 172 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
cannam@167 173 ci = (cr = O) + 1;
cannam@167 174 I = O;
cannam@167 175 }
cannam@167 176 else
cannam@167 177 ci = (cr = I) + 1;
cannam@167 178 io = ii = (ro = ri = O) + 1;
cannam@167 179 }
cannam@167 180 else {
cannam@167 181 k1 = OB; k2 = IB;
cannam@167 182 r1 = (r0 = O) + p->vn;
cannam@167 183 ci = (cr = O) + 1;
cannam@167 184 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
cannam@167 185 ri = (ii = I) + 1;
cannam@167 186 ro = (io = O) + 1;
cannam@167 187 I = O;
cannam@167 188 }
cannam@167 189 else
cannam@167 190 ro = ri = (io = ii = I) + 1;
cannam@167 191 }
cannam@167 192
cannam@167 193 MPI_Comm_rank(p->comm, &my_pe);
cannam@167 194 MPI_Comm_size(p->comm, &n_pes);
cannam@167 195
cannam@167 196 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
cannam@167 197 i = p->sz->rnk - 2; A(i >= 0);
cannam@167 198 sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
cannam@167 199 sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
cannam@167 200 for (--i; i >= 0; --i) {
cannam@167 201 sz->dims[i].n = p->sz->dims[i+1].n;
cannam@167 202 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
cannam@167 203 }
cannam@167 204 nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n;
cannam@167 205 {
cannam@167 206 INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
cannam@167 207 INT is = sz->dims[0].n * sz->dims[0].is;
cannam@167 208 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe);
cannam@167 209 sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
cannam@167 210 cld1 = X(mkplan_d)(plnr,
cannam@167 211 X(mkproblem_rdft2_d)(sz,
cannam@167 212 X(mktensor_2d)(b, is, is,
cannam@167 213 p->vn,ivs,ovs),
cannam@167 214 r0, r1, cr, ci, p->kind));
cannam@167 215 if (XM(any_true)(!cld1, p->comm)) goto nada;
cannam@167 216 }
cannam@167 217
cannam@167 218 nrest *= p->vn;
cannam@167 219 n1 = p->sz->dims[1].n;
cannam@167 220 b1 = p->sz->dims[1].b[k2];
cannam@167 221 if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */
cannam@167 222 n1 = n1 / 2 + 1;
cannam@167 223 b1 = b1 == p->sz->dims[1].n ? n1 : b1;
cannam@167 224 }
cannam@167 225
cannam@167 226 if (p->kind == R2HC)
cannam@167 227 cldt = X(mkplan_d)(plnr,
cannam@167 228 XM(mkproblem_transpose)(
cannam@167 229 p->sz->dims[0].n, n1, nrest * 2,
cannam@167 230 I, O,
cannam@167 231 p->sz->dims[0].b[IB], b1,
cannam@167 232 p->comm, 0));
cannam@167 233 else
cannam@167 234 cldt = X(mkplan_d)(plnr,
cannam@167 235 XM(mkproblem_transpose)(
cannam@167 236 n1, p->sz->dims[0].n, nrest * 2,
cannam@167 237 I, O,
cannam@167 238 b1, p->sz->dims[0].b[OB],
cannam@167 239 p->comm, 0));
cannam@167 240 if (XM(any_true)(!cldt, p->comm)) goto nada;
cannam@167 241
cannam@167 242 {
cannam@167 243 INT is = p->sz->dims[0].n * nrest * 2;
cannam@167 244 INT b = XM(block)(n1, b1, my_pe);
cannam@167 245 cld2 = X(mkplan_d)(plnr,
cannam@167 246 X(mkproblem_dft_d)(X(mktensor_1d)(
cannam@167 247 p->sz->dims[0].n,
cannam@167 248 nrest * 2, nrest * 2),
cannam@167 249 X(mktensor_2d)(b, is, is,
cannam@167 250 nrest, 2, 2),
cannam@167 251 ri, ii, ro, io));
cannam@167 252 if (XM(any_true)(!cld2, p->comm)) goto nada;
cannam@167 253 }
cannam@167 254
cannam@167 255 pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
cannam@167 256 pln->cld1 = cld1;
cannam@167 257 pln->cldt = cldt;
cannam@167 258 pln->cld2 = cld2;
cannam@167 259 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@167 260 pln->vn = p->vn;
cannam@167 261
cannam@167 262 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@167 263 X(ops_add2)(&cldt->ops, &pln->super.super.ops);
cannam@167 264
cannam@167 265 return &(pln->super.super);
cannam@167 266
cannam@167 267 nada:
cannam@167 268 X(plan_destroy_internal)(cld2);
cannam@167 269 X(plan_destroy_internal)(cldt);
cannam@167 270 X(plan_destroy_internal)(cld1);
cannam@167 271 return (plan *) 0;
cannam@167 272 }
cannam@167 273
cannam@167 274 static solver *mksolver(int preserve_input)
cannam@167 275 {
cannam@167 276 static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
cannam@167 277 S *slv = MKSOLVER(S, &sadt);
cannam@167 278 slv->preserve_input = preserve_input;
cannam@167 279 return &(slv->super);
cannam@167 280 }
cannam@167 281
cannam@167 282 void XM(rdft2_rank_geq2_transposed_register)(planner *p)
cannam@167 283 {
cannam@167 284 int preserve_input;
cannam@167 285 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
cannam@167 286 REGISTER_SOLVER(p, mksolver(preserve_input));
cannam@167 287 }