annotate src/fftw-3.3.8/mpi/rdft-rank-geq2.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* Complex RDFTs of rank >= 2, for the case where we are distributed
cannam@167 22 across the first dimension only, and the output is not transposed. */
cannam@167 23
cannam@167 24 #include "mpi-rdft.h"
cannam@167 25
cannam@167 26 typedef struct {
cannam@167 27 solver super;
cannam@167 28 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@167 29 } S;
cannam@167 30
cannam@167 31 typedef struct {
cannam@167 32 plan_mpi_rdft super;
cannam@167 33
cannam@167 34 plan *cld1, *cld2;
cannam@167 35 int preserve_input;
cannam@167 36 } P;
cannam@167 37
cannam@167 38 static void apply(const plan *ego_, R *I, R *O)
cannam@167 39 {
cannam@167 40 const P *ego = (const P *) ego_;
cannam@167 41 plan_rdft *cld1, *cld2;
cannam@167 42
cannam@167 43 /* RDFT local dimensions */
cannam@167 44 cld1 = (plan_rdft *) ego->cld1;
cannam@167 45 if (ego->preserve_input) {
cannam@167 46 cld1->apply(ego->cld1, I, O);
cannam@167 47 I = O;
cannam@167 48 }
cannam@167 49 else
cannam@167 50 cld1->apply(ego->cld1, I, I);
cannam@167 51
cannam@167 52 /* RDFT non-local dimension (via rdft-rank1-bigvec, usually): */
cannam@167 53 cld2 = (plan_rdft *) ego->cld2;
cannam@167 54 cld2->apply(ego->cld2, I, O);
cannam@167 55 }
cannam@167 56
cannam@167 57 static int applicable(const S *ego, const problem *p_,
cannam@167 58 const planner *plnr)
cannam@167 59 {
cannam@167 60 const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
cannam@167 61 return (1
cannam@167 62 && p->sz->rnk > 1
cannam@167 63 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
cannam@167 64 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@167 65 && p->I != p->O))
cannam@167 66 && XM(is_local_after)(1, p->sz, IB)
cannam@167 67 && XM(is_local_after)(1, p->sz, OB)
cannam@167 68 && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
cannam@167 69 || !XM(rdft_serial_applicable)(p))
cannam@167 70 );
cannam@167 71 }
cannam@167 72
cannam@167 73 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 74 {
cannam@167 75 P *ego = (P *) ego_;
cannam@167 76 X(plan_awake)(ego->cld1, wakefulness);
cannam@167 77 X(plan_awake)(ego->cld2, wakefulness);
cannam@167 78 }
cannam@167 79
cannam@167 80 static void destroy(plan *ego_)
cannam@167 81 {
cannam@167 82 P *ego = (P *) ego_;
cannam@167 83 X(plan_destroy_internal)(ego->cld2);
cannam@167 84 X(plan_destroy_internal)(ego->cld1);
cannam@167 85 }
cannam@167 86
cannam@167 87 static void print(const plan *ego_, printer *p)
cannam@167 88 {
cannam@167 89 const P *ego = (const P *) ego_;
cannam@167 90 p->print(p, "(mpi-rdft-rank-geq2%s%(%p%)%(%p%))",
cannam@167 91 ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
cannam@167 92 }
cannam@167 93
cannam@167 94 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 95 {
cannam@167 96 const S *ego = (const S *) ego_;
cannam@167 97 const problem_mpi_rdft *p;
cannam@167 98 P *pln;
cannam@167 99 plan *cld1 = 0, *cld2 = 0;
cannam@167 100 R *I, *O, *I2;
cannam@167 101 tensor *sz;
cannam@167 102 dtensor *sz2;
cannam@167 103 int i, my_pe, n_pes;
cannam@167 104 INT nrest;
cannam@167 105 static const plan_adt padt = {
cannam@167 106 XM(rdft_solve), awake, print, destroy
cannam@167 107 };
cannam@167 108
cannam@167 109 UNUSED(ego);
cannam@167 110
cannam@167 111 if (!applicable(ego, p_, plnr))
cannam@167 112 return (plan *) 0;
cannam@167 113
cannam@167 114 p = (const problem_mpi_rdft *) p_;
cannam@167 115
cannam@167 116 I2 = I = p->I;
cannam@167 117 O = p->O;
cannam@167 118 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr))
cannam@167 119 I = O;
cannam@167 120 MPI_Comm_rank(p->comm, &my_pe);
cannam@167 121 MPI_Comm_size(p->comm, &n_pes);
cannam@167 122
cannam@167 123 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
cannam@167 124 i = p->sz->rnk - 2; A(i >= 0);
cannam@167 125 sz->dims[i].n = p->sz->dims[i+1].n;
cannam@167 126 sz->dims[i].is = sz->dims[i].os = p->vn;
cannam@167 127 for (--i; i >= 0; --i) {
cannam@167 128 sz->dims[i].n = p->sz->dims[i+1].n;
cannam@167 129 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
cannam@167 130 }
cannam@167 131 nrest = X(tensor_sz)(sz);
cannam@167 132 {
cannam@167 133 INT is = sz->dims[0].n * sz->dims[0].is;
cannam@167 134 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
cannam@167 135 cld1 = X(mkplan_d)(plnr,
cannam@167 136 X(mkproblem_rdft_d)(sz,
cannam@167 137 X(mktensor_2d)(b, is, is,
cannam@167 138 p->vn, 1, 1),
cannam@167 139 I2, I, p->kind + 1));
cannam@167 140 if (XM(any_true)(!cld1, p->comm)) goto nada;
cannam@167 141 }
cannam@167 142
cannam@167 143 sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
cannam@167 144 sz2->dims[0] = p->sz->dims[0];
cannam@167 145 cld2 = X(mkplan_d)(plnr, XM(mkproblem_rdft_d)(sz2, nrest * p->vn,
cannam@167 146 I, O,
cannam@167 147 p->comm, p->kind,
cannam@167 148 RANK1_BIGVEC_ONLY));
cannam@167 149 if (XM(any_true)(!cld2, p->comm)) goto nada;
cannam@167 150
cannam@167 151 pln = MKPLAN_MPI_RDFT(P, &padt, apply);
cannam@167 152 pln->cld1 = cld1;
cannam@167 153 pln->cld2 = cld2;
cannam@167 154 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@167 155
cannam@167 156 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@167 157
cannam@167 158 return &(pln->super.super);
cannam@167 159
cannam@167 160 nada:
cannam@167 161 X(plan_destroy_internal)(cld2);
cannam@167 162 X(plan_destroy_internal)(cld1);
cannam@167 163 return (plan *) 0;
cannam@167 164 }
cannam@167 165
cannam@167 166 static solver *mksolver(int preserve_input)
cannam@167 167 {
cannam@167 168 static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
cannam@167 169 S *slv = MKSOLVER(S, &sadt);
cannam@167 170 slv->preserve_input = preserve_input;
cannam@167 171 return &(slv->super);
cannam@167 172 }
cannam@167 173
cannam@167 174 void XM(rdft_rank_geq2_register)(planner *p)
cannam@167 175 {
cannam@167 176 int preserve_input;
cannam@167 177 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
cannam@167 178 REGISTER_SOLVER(p, mksolver(preserve_input));
cannam@167 179 }