annotate src/fftw-3.3.8/doc/html/Transposed-distributions.html @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
cannam@167 2 <html>
cannam@167 3 <!-- This manual is for FFTW
cannam@167 4 (version 3.3.8, 24 May 2018).
cannam@167 5
cannam@167 6 Copyright (C) 2003 Matteo Frigo.
cannam@167 7
cannam@167 8 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@167 9
cannam@167 10 Permission is granted to make and distribute verbatim copies of this
cannam@167 11 manual provided the copyright notice and this permission notice are
cannam@167 12 preserved on all copies.
cannam@167 13
cannam@167 14 Permission is granted to copy and distribute modified versions of this
cannam@167 15 manual under the conditions for verbatim copying, provided that the
cannam@167 16 entire resulting derived work is distributed under the terms of a
cannam@167 17 permission notice identical to this one.
cannam@167 18
cannam@167 19 Permission is granted to copy and distribute translations of this manual
cannam@167 20 into another language, under the above conditions for modified versions,
cannam@167 21 except that this permission notice may be stated in a translation
cannam@167 22 approved by the Free Software Foundation. -->
cannam@167 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
cannam@167 24 <head>
cannam@167 25 <title>FFTW 3.3.8: Transposed distributions</title>
cannam@167 26
cannam@167 27 <meta name="description" content="FFTW 3.3.8: Transposed distributions">
cannam@167 28 <meta name="keywords" content="FFTW 3.3.8: Transposed distributions">
cannam@167 29 <meta name="resource-type" content="document">
cannam@167 30 <meta name="distribution" content="global">
cannam@167 31 <meta name="Generator" content="makeinfo">
cannam@167 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
cannam@167 33 <link href="index.html#Top" rel="start" title="Top">
cannam@167 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
cannam@167 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
cannam@167 36 <link href="MPI-Data-Distribution.html#MPI-Data-Distribution" rel="up" title="MPI Data Distribution">
cannam@167 37 <link href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" rel="next" title="One-dimensional distributions">
cannam@167 38 <link href="Load-balancing.html#Load-balancing" rel="prev" title="Load balancing">
cannam@167 39 <style type="text/css">
cannam@167 40 <!--
cannam@167 41 a.summary-letter {text-decoration: none}
cannam@167 42 blockquote.indentedblock {margin-right: 0em}
cannam@167 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
cannam@167 44 blockquote.smallquotation {font-size: smaller}
cannam@167 45 div.display {margin-left: 3.2em}
cannam@167 46 div.example {margin-left: 3.2em}
cannam@167 47 div.lisp {margin-left: 3.2em}
cannam@167 48 div.smalldisplay {margin-left: 3.2em}
cannam@167 49 div.smallexample {margin-left: 3.2em}
cannam@167 50 div.smalllisp {margin-left: 3.2em}
cannam@167 51 kbd {font-style: oblique}
cannam@167 52 pre.display {font-family: inherit}
cannam@167 53 pre.format {font-family: inherit}
cannam@167 54 pre.menu-comment {font-family: serif}
cannam@167 55 pre.menu-preformatted {font-family: serif}
cannam@167 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
cannam@167 57 pre.smallexample {font-size: smaller}
cannam@167 58 pre.smallformat {font-family: inherit; font-size: smaller}
cannam@167 59 pre.smalllisp {font-size: smaller}
cannam@167 60 span.nolinebreak {white-space: nowrap}
cannam@167 61 span.roman {font-family: initial; font-weight: normal}
cannam@167 62 span.sansserif {font-family: sans-serif; font-weight: normal}
cannam@167 63 ul.no-bullet {list-style: none}
cannam@167 64 -->
cannam@167 65 </style>
cannam@167 66
cannam@167 67
cannam@167 68 </head>
cannam@167 69
cannam@167 70 <body lang="en">
cannam@167 71 <a name="Transposed-distributions"></a>
cannam@167 72 <div class="header">
cannam@167 73 <p>
cannam@167 74 Next: <a href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" accesskey="n" rel="next">One-dimensional distributions</a>, Previous: <a href="Load-balancing.html#Load-balancing" accesskey="p" rel="prev">Load balancing</a>, Up: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="u" rel="up">MPI Data Distribution</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 75 </div>
cannam@167 76 <hr>
cannam@167 77 <a name="Transposed-distributions-1"></a>
cannam@167 78 <h4 class="subsection">6.4.3 Transposed distributions</h4>
cannam@167 79
cannam@167 80 <p>Internally, FFTW&rsquo;s MPI transform algorithms work by first computing
cannam@167 81 transforms of the data local to each process, then by globally
cannam@167 82 <em>transposing</em> the data in some fashion to redistribute the data
cannam@167 83 among the processes, transforming the new data local to each process,
cannam@167 84 and transposing back. For example, a two-dimensional <code>n0</code> by
cannam@167 85 <code>n1</code> array, distributed across the <code>n0</code> dimension, is
cannam@167 86 transformd by: (i) transforming the <code>n1</code> dimension, which are
cannam@167 87 local to each process; (ii) transposing to an <code>n1</code> by <code>n0</code>
cannam@167 88 array, distributed across the <code>n1</code> dimension; (iii) transforming
cannam@167 89 the <code>n0</code> dimension, which is now local to each process; (iv)
cannam@167 90 transposing back.
cannam@167 91 <a name="index-transpose"></a>
cannam@167 92 </p>
cannam@167 93
cannam@167 94 <p>However, in many applications it is acceptable to compute a
cannam@167 95 multidimensional DFT whose results are produced in transposed order
cannam@167 96 (e.g., <code>n1</code> by <code>n0</code> in two dimensions). This provides a
cannam@167 97 significant performance advantage, because it means that the final
cannam@167 98 transposition step can be omitted. FFTW supports this optimization,
cannam@167 99 which you specify by passing the flag <code>FFTW_MPI_TRANSPOSED_OUT</code>
cannam@167 100 to the planner routines. To compute the inverse transform of
cannam@167 101 transposed output, you specify <code>FFTW_MPI_TRANSPOSED_IN</code> to tell
cannam@167 102 it that the input is transposed. In this section, we explain how to
cannam@167 103 interpret the output format of such a transform.
cannam@167 104 <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT"></a>
cannam@167 105 <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN"></a>
cannam@167 106 </p>
cannam@167 107
cannam@167 108 <p>Suppose you have are transforming multi-dimensional data with (at
cannam@167 109 least two) dimensions n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
cannam@167 110 . As always, it is distributed along
cannam@167 111 the first dimension n<sub>0</sub>
cannam@167 112 . Now, if we compute its DFT with the
cannam@167 113 <code>FFTW_MPI_TRANSPOSED_OUT</code> flag, the resulting output data are stored
cannam@167 114 with the first <em>two</em> dimensions transposed: n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>
cannam@167 115 ,
cannam@167 116 distributed along the n<sub>1</sub>
cannam@167 117 dimension. Conversely, if we take the
cannam@167 118 n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>
cannam@167 119 data and transform it with the
cannam@167 120 <code>FFTW_MPI_TRANSPOSED_IN</code> flag, then the format goes back to the
cannam@167 121 original n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
cannam@167 122 array.
cannam@167 123 </p>
cannam@167 124 <p>There are two ways to find the portion of the transposed array that
cannam@167 125 resides on the current process. First, you can simply call the
cannam@167 126 appropriate &lsquo;<samp>local_size</samp>&rsquo; function, passing n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>
cannam@167 127 (the
cannam@167 128 transposed dimensions). This would mean calling the &lsquo;<samp>local_size</samp>&rsquo;
cannam@167 129 function twice, once for the transposed and once for the
cannam@167 130 non-transposed dimensions. Alternatively, you can call one of the
cannam@167 131 &lsquo;<samp>local_size_transposed</samp>&rsquo; functions, which returns both the
cannam@167 132 non-transposed and transposed data distribution from a single call.
cannam@167 133 For example, for a 3d transform with transposed output (or input), you
cannam@167 134 might call:
cannam@167 135 </p>
cannam@167 136 <div class="example">
cannam@167 137 <pre class="example">ptrdiff_t fftw_mpi_local_size_3d_transposed(
cannam@167 138 ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm,
cannam@167 139 ptrdiff_t *local_n0, ptrdiff_t *local_0_start,
cannam@167 140 ptrdiff_t *local_n1, ptrdiff_t *local_1_start);
cannam@167 141 </pre></div>
cannam@167 142 <a name="index-fftw_005fmpi_005flocal_005fsize_005f3d_005ftransposed"></a>
cannam@167 143
cannam@167 144 <p>Here, <code>local_n0</code> and <code>local_0_start</code> give the size and
cannam@167 145 starting index of the <code>n0</code> dimension for the
cannam@167 146 <em>non</em>-transposed data, as in the previous sections. For
cannam@167 147 <em>transposed</em> data (e.g. the output for
cannam@167 148 <code>FFTW_MPI_TRANSPOSED_OUT</code>), <code>local_n1</code> and
cannam@167 149 <code>local_1_start</code> give the size and starting index of the <code>n1</code>
cannam@167 150 dimension, which is the first dimension of the transposed data
cannam@167 151 (<code>n1</code> by <code>n0</code> by <code>n2</code>).
cannam@167 152 </p>
cannam@167 153 <p>(Note that <code>FFTW_MPI_TRANSPOSED_IN</code> is completely equivalent to
cannam@167 154 performing <code>FFTW_MPI_TRANSPOSED_OUT</code> and passing the first two
cannam@167 155 dimensions to the planner in reverse order, or vice versa. If you
cannam@167 156 pass <em>both</em> the <code>FFTW_MPI_TRANSPOSED_IN</code> and
cannam@167 157 <code>FFTW_MPI_TRANSPOSED_OUT</code> flags, it is equivalent to swapping the
cannam@167 158 first two dimensions passed to the planner and passing <em>neither</em>
cannam@167 159 flag.)
cannam@167 160 </p>
cannam@167 161 <hr>
cannam@167 162 <div class="header">
cannam@167 163 <p>
cannam@167 164 Next: <a href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" accesskey="n" rel="next">One-dimensional distributions</a>, Previous: <a href="Load-balancing.html#Load-balancing" accesskey="p" rel="prev">Load balancing</a>, Up: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="u" rel="up">MPI Data Distribution</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 165 </div>
cannam@167 166
cannam@167 167
cannam@167 168
cannam@167 169 </body>
cannam@167 170 </html>