annotate src/fftw-3.3.8/dft/simd/common/t3fv_8.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:51 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include dft/simd/t3f.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 37 FP additions, 32 FP multiplications,
cannam@167 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
cannam@167 33 * 31 stack variables, 1 constants, and 16 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t3f.h"
cannam@167 36
cannam@167 37 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 40 {
cannam@167 41 INT m;
cannam@167 42 R *x;
cannam@167 43 x = ri;
cannam@167 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@167 45 V T2, T3, Ta, T4, Tb, Tc, Tp;
cannam@167 46 T2 = LDW(&(W[0]));
cannam@167 47 T3 = LDW(&(W[TWVL * 2]));
cannam@167 48 Ta = VZMULJ(T2, T3);
cannam@167 49 T4 = VZMUL(T2, T3);
cannam@167 50 Tb = LDW(&(W[TWVL * 4]));
cannam@167 51 Tc = VZMULJ(Ta, Tb);
cannam@167 52 Tp = VZMULJ(T2, Tb);
cannam@167 53 {
cannam@167 54 V T7, Tx, Ts, Ty, Tf, TA, Tk, TB, T1, T6, T5;
cannam@167 55 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 57 T6 = VZMULJ(T4, T5);
cannam@167 58 T7 = VSUB(T1, T6);
cannam@167 59 Tx = VADD(T1, T6);
cannam@167 60 {
cannam@167 61 V To, Tr, Tn, Tq;
cannam@167 62 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 63 To = VZMULJ(Ta, Tn);
cannam@167 64 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 65 Tr = VZMULJ(Tp, Tq);
cannam@167 66 Ts = VSUB(To, Tr);
cannam@167 67 Ty = VADD(To, Tr);
cannam@167 68 }
cannam@167 69 {
cannam@167 70 V T9, Te, T8, Td;
cannam@167 71 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 72 T9 = VZMULJ(T2, T8);
cannam@167 73 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 74 Te = VZMULJ(Tc, Td);
cannam@167 75 Tf = VSUB(T9, Te);
cannam@167 76 TA = VADD(T9, Te);
cannam@167 77 }
cannam@167 78 {
cannam@167 79 V Th, Tj, Tg, Ti;
cannam@167 80 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 81 Th = VZMULJ(Tb, Tg);
cannam@167 82 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 83 Tj = VZMULJ(T3, Ti);
cannam@167 84 Tk = VSUB(Th, Tj);
cannam@167 85 TB = VADD(Th, Tj);
cannam@167 86 }
cannam@167 87 {
cannam@167 88 V Tz, TC, TD, TE;
cannam@167 89 Tz = VADD(Tx, Ty);
cannam@167 90 TC = VADD(TA, TB);
cannam@167 91 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
cannam@167 92 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
cannam@167 93 TD = VSUB(Tx, Ty);
cannam@167 94 TE = VSUB(TB, TA);
cannam@167 95 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
cannam@167 96 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
cannam@167 97 {
cannam@167 98 V Tm, Tv, Tu, Tw, Tl, Tt;
cannam@167 99 Tl = VADD(Tf, Tk);
cannam@167 100 Tm = VFMA(LDK(KP707106781), Tl, T7);
cannam@167 101 Tv = VFNMS(LDK(KP707106781), Tl, T7);
cannam@167 102 Tt = VSUB(Tk, Tf);
cannam@167 103 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
cannam@167 104 Tw = VFMA(LDK(KP707106781), Tt, Ts);
cannam@167 105 ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
cannam@167 106 ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@167 107 ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
cannam@167 108 ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@167 109 }
cannam@167 110 }
cannam@167 111 }
cannam@167 112 }
cannam@167 113 }
cannam@167 114 VLEAVE();
cannam@167 115 }
cannam@167 116
cannam@167 117 static const tw_instr twinstr[] = {
cannam@167 118 VTW(0, 1),
cannam@167 119 VTW(0, 3),
cannam@167 120 VTW(0, 7),
cannam@167 121 {TW_NEXT, VL, 0}
cannam@167 122 };
cannam@167 123
cannam@167 124 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
cannam@167 125
cannam@167 126 void XSIMD(codelet_t3fv_8) (planner *p) {
cannam@167 127 X(kdft_dit_register) (p, t3fv_8, &desc);
cannam@167 128 }
cannam@167 129 #else
cannam@167 130
cannam@167 131 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include dft/simd/t3f.h */
cannam@167 132
cannam@167 133 /*
cannam@167 134 * This function contains 37 FP additions, 24 FP multiplications,
cannam@167 135 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
cannam@167 136 * 31 stack variables, 1 constants, and 16 memory accesses
cannam@167 137 */
cannam@167 138 #include "dft/simd/t3f.h"
cannam@167 139
cannam@167 140 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 141 {
cannam@167 142 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 143 {
cannam@167 144 INT m;
cannam@167 145 R *x;
cannam@167 146 x = ri;
cannam@167 147 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@167 148 V T2, T3, Ta, T4, Tb, Tc, Tq;
cannam@167 149 T2 = LDW(&(W[0]));
cannam@167 150 T3 = LDW(&(W[TWVL * 2]));
cannam@167 151 Ta = VZMULJ(T2, T3);
cannam@167 152 T4 = VZMUL(T2, T3);
cannam@167 153 Tb = LDW(&(W[TWVL * 4]));
cannam@167 154 Tc = VZMULJ(Ta, Tb);
cannam@167 155 Tq = VZMULJ(T2, Tb);
cannam@167 156 {
cannam@167 157 V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
cannam@167 158 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 159 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 160 T6 = VZMULJ(T4, T5);
cannam@167 161 T7 = VSUB(T1, T6);
cannam@167 162 Tx = VADD(T1, T6);
cannam@167 163 {
cannam@167 164 V Tp, Ts, To, Tr;
cannam@167 165 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 166 Tp = VZMULJ(Ta, To);
cannam@167 167 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 168 Ts = VZMULJ(Tq, Tr);
cannam@167 169 Tt = VSUB(Tp, Ts);
cannam@167 170 Ty = VADD(Tp, Ts);
cannam@167 171 }
cannam@167 172 {
cannam@167 173 V T9, Te, T8, Td;
cannam@167 174 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 175 T9 = VZMULJ(T2, T8);
cannam@167 176 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 177 Te = VZMULJ(Tc, Td);
cannam@167 178 Tf = VSUB(T9, Te);
cannam@167 179 TA = VADD(T9, Te);
cannam@167 180 }
cannam@167 181 {
cannam@167 182 V Th, Tj, Tg, Ti;
cannam@167 183 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 184 Th = VZMULJ(Tb, Tg);
cannam@167 185 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 186 Tj = VZMULJ(T3, Ti);
cannam@167 187 Tk = VSUB(Th, Tj);
cannam@167 188 TB = VADD(Th, Tj);
cannam@167 189 }
cannam@167 190 {
cannam@167 191 V Tz, TC, TD, TE;
cannam@167 192 Tz = VADD(Tx, Ty);
cannam@167 193 TC = VADD(TA, TB);
cannam@167 194 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
cannam@167 195 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
cannam@167 196 TD = VSUB(Tx, Ty);
cannam@167 197 TE = VBYI(VSUB(TB, TA));
cannam@167 198 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
cannam@167 199 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
cannam@167 200 {
cannam@167 201 V Tm, Tv, Tu, Tw, Tl, Tn;
cannam@167 202 Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
cannam@167 203 Tm = VADD(T7, Tl);
cannam@167 204 Tv = VSUB(T7, Tl);
cannam@167 205 Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
cannam@167 206 Tu = VBYI(VSUB(Tn, Tt));
cannam@167 207 Tw = VBYI(VADD(Tt, Tn));
cannam@167 208 ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
cannam@167 209 ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
cannam@167 210 ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
cannam@167 211 ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
cannam@167 212 }
cannam@167 213 }
cannam@167 214 }
cannam@167 215 }
cannam@167 216 }
cannam@167 217 VLEAVE();
cannam@167 218 }
cannam@167 219
cannam@167 220 static const tw_instr twinstr[] = {
cannam@167 221 VTW(0, 1),
cannam@167 222 VTW(0, 3),
cannam@167 223 VTW(0, 7),
cannam@167 224 {TW_NEXT, VL, 0}
cannam@167 225 };
cannam@167 226
cannam@167 227 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
cannam@167 228
cannam@167 229 void XSIMD(codelet_t3fv_8) (planner *p) {
cannam@167 230 X(kdft_dit_register) (p, t3fv_8, &desc);
cannam@167 231 }
cannam@167 232 #endif