annotate src/fftw-3.3.8/dft/simd/common/t3fv_20.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:54 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include dft/simd/t3f.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 138 FP additions, 118 FP multiplications,
cannam@167 32 * (or, 92 additions, 72 multiplications, 46 fused multiply/add),
cannam@167 33 * 73 stack variables, 4 constants, and 40 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t3f.h"
cannam@167 36
cannam@167 37 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 43 {
cannam@167 44 INT m;
cannam@167 45 R *x;
cannam@167 46 x = ri;
cannam@167 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
cannam@167 48 V T2, T8, T9, TA, T3, Tc, T4, TZ, T18, Tl, Tq, Tx, TU, Td, Te;
cannam@167 49 V T15, Ti, Tt, TJ;
cannam@167 50 T2 = LDW(&(W[0]));
cannam@167 51 T8 = LDW(&(W[TWVL * 2]));
cannam@167 52 T9 = VZMUL(T2, T8);
cannam@167 53 TA = VZMULJ(T2, T8);
cannam@167 54 T3 = LDW(&(W[TWVL * 4]));
cannam@167 55 Tc = VZMULJ(T9, T3);
cannam@167 56 T4 = VZMUL(T2, T3);
cannam@167 57 TZ = VZMUL(T9, T3);
cannam@167 58 T18 = VZMULJ(TA, T3);
cannam@167 59 Tl = VZMULJ(T8, T3);
cannam@167 60 Tq = VZMULJ(T2, T3);
cannam@167 61 Tx = VZMUL(T8, T3);
cannam@167 62 TU = VZMUL(TA, T3);
cannam@167 63 Td = LDW(&(W[TWVL * 6]));
cannam@167 64 Te = VZMULJ(Tc, Td);
cannam@167 65 T15 = VZMULJ(TA, Td);
cannam@167 66 Ti = VZMULJ(T8, Td);
cannam@167 67 Tt = VZMULJ(T2, Td);
cannam@167 68 TJ = VZMULJ(T9, Td);
cannam@167 69 {
cannam@167 70 V T7, TM, T1F, T23, T1i, T1p, T1q, T1j, Tp, TE, TF, T27, T28, T29, T1P;
cannam@167 71 V T1S, T1T, TY, T1c, T1d, T24, T25, T26, T1I, T1L, T1M, TG, T1e;
cannam@167 72 {
cannam@167 73 V T1, TL, T6, TI, TK, T5, TH, T1D, T1E;
cannam@167 74 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 75 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@167 76 TL = VZMULJ(TJ, TK);
cannam@167 77 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 78 T6 = VZMULJ(T4, T5);
cannam@167 79 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 80 TI = VZMULJ(Tc, TH);
cannam@167 81 T7 = VSUB(T1, T6);
cannam@167 82 TM = VSUB(TI, TL);
cannam@167 83 T1D = VADD(T1, T6);
cannam@167 84 T1E = VADD(TI, TL);
cannam@167 85 T1F = VSUB(T1D, T1E);
cannam@167 86 T23 = VADD(T1D, T1E);
cannam@167 87 }
cannam@167 88 {
cannam@167 89 V Th, T1G, T14, T1O, T1b, T1R, To, T1J, Tw, T1N, TR, T1H, TX, T1K, TD;
cannam@167 90 V T1Q;
cannam@167 91 {
cannam@167 92 V Tb, Tg, Ta, Tf;
cannam@167 93 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 94 Tb = VZMULJ(T9, Ta);
cannam@167 95 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 96 Tg = VZMULJ(Te, Tf);
cannam@167 97 Th = VSUB(Tb, Tg);
cannam@167 98 T1G = VADD(Tb, Tg);
cannam@167 99 }
cannam@167 100 {
cannam@167 101 V T11, T13, T10, T12;
cannam@167 102 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 103 T11 = VZMULJ(TZ, T10);
cannam@167 104 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 105 T13 = VZMULJ(T8, T12);
cannam@167 106 T14 = VSUB(T11, T13);
cannam@167 107 T1O = VADD(T11, T13);
cannam@167 108 }
cannam@167 109 {
cannam@167 110 V T17, T1a, T16, T19;
cannam@167 111 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
cannam@167 112 T17 = VZMULJ(T15, T16);
cannam@167 113 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 114 T1a = VZMULJ(T18, T19);
cannam@167 115 T1b = VSUB(T17, T1a);
cannam@167 116 T1R = VADD(T17, T1a);
cannam@167 117 }
cannam@167 118 {
cannam@167 119 V Tk, Tn, Tj, Tm;
cannam@167 120 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
cannam@167 121 Tk = VZMULJ(Ti, Tj);
cannam@167 122 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 123 Tn = VZMULJ(Tl, Tm);
cannam@167 124 To = VSUB(Tk, Tn);
cannam@167 125 T1J = VADD(Tk, Tn);
cannam@167 126 }
cannam@167 127 {
cannam@167 128 V Ts, Tv, Tr, Tu;
cannam@167 129 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 130 Ts = VZMULJ(Tq, Tr);
cannam@167 131 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
cannam@167 132 Tv = VZMULJ(Tt, Tu);
cannam@167 133 Tw = VSUB(Ts, Tv);
cannam@167 134 T1N = VADD(Ts, Tv);
cannam@167 135 }
cannam@167 136 {
cannam@167 137 V TO, TQ, TN, TP;
cannam@167 138 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 139 TO = VZMULJ(T3, TN);
cannam@167 140 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
cannam@167 141 TQ = VZMULJ(Td, TP);
cannam@167 142 TR = VSUB(TO, TQ);
cannam@167 143 T1H = VADD(TO, TQ);
cannam@167 144 }
cannam@167 145 {
cannam@167 146 V TT, TW, TS, TV;
cannam@167 147 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 148 TT = VZMULJ(T2, TS);
cannam@167 149 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 150 TW = VZMULJ(TU, TV);
cannam@167 151 TX = VSUB(TT, TW);
cannam@167 152 T1K = VADD(TT, TW);
cannam@167 153 }
cannam@167 154 {
cannam@167 155 V Tz, TC, Ty, TB;
cannam@167 156 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 157 Tz = VZMULJ(Tx, Ty);
cannam@167 158 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 159 TC = VZMULJ(TA, TB);
cannam@167 160 TD = VSUB(Tz, TC);
cannam@167 161 T1Q = VADD(Tz, TC);
cannam@167 162 }
cannam@167 163 T1i = VSUB(TX, TR);
cannam@167 164 T1p = VSUB(Th, To);
cannam@167 165 T1q = VSUB(Tw, TD);
cannam@167 166 T1j = VSUB(T1b, T14);
cannam@167 167 Tp = VADD(Th, To);
cannam@167 168 TE = VADD(Tw, TD);
cannam@167 169 TF = VADD(Tp, TE);
cannam@167 170 T27 = VADD(T1N, T1O);
cannam@167 171 T28 = VADD(T1Q, T1R);
cannam@167 172 T29 = VADD(T27, T28);
cannam@167 173 T1P = VSUB(T1N, T1O);
cannam@167 174 T1S = VSUB(T1Q, T1R);
cannam@167 175 T1T = VADD(T1P, T1S);
cannam@167 176 TY = VADD(TR, TX);
cannam@167 177 T1c = VADD(T14, T1b);
cannam@167 178 T1d = VADD(TY, T1c);
cannam@167 179 T24 = VADD(T1G, T1H);
cannam@167 180 T25 = VADD(T1J, T1K);
cannam@167 181 T26 = VADD(T24, T25);
cannam@167 182 T1I = VSUB(T1G, T1H);
cannam@167 183 T1L = VSUB(T1J, T1K);
cannam@167 184 T1M = VADD(T1I, T1L);
cannam@167 185 }
cannam@167 186 TG = VADD(T7, TF);
cannam@167 187 T1e = VADD(TM, T1d);
cannam@167 188 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, TG), ms, &(x[WS(rs, 1)]));
cannam@167 189 ST(&(x[WS(rs, 15)]), VFMAI(T1e, TG), ms, &(x[WS(rs, 1)]));
cannam@167 190 {
cannam@167 191 V T2c, T2a, T2b, T2g, T2i, T2e, T2f, T2h, T2d;
cannam@167 192 T2c = VSUB(T26, T29);
cannam@167 193 T2a = VADD(T26, T29);
cannam@167 194 T2b = VFNMS(LDK(KP250000000), T2a, T23);
cannam@167 195 T2e = VSUB(T24, T25);
cannam@167 196 T2f = VSUB(T27, T28);
cannam@167 197 T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e));
cannam@167 198 T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f));
cannam@167 199 ST(&(x[0]), VADD(T23, T2a), ms, &(x[0]));
cannam@167 200 T2h = VFNMS(LDK(KP559016994), T2c, T2b);
cannam@167 201 ST(&(x[WS(rs, 8)]), VFNMSI(T2i, T2h), ms, &(x[0]));
cannam@167 202 ST(&(x[WS(rs, 12)]), VFMAI(T2i, T2h), ms, &(x[0]));
cannam@167 203 T2d = VFMA(LDK(KP559016994), T2c, T2b);
cannam@167 204 ST(&(x[WS(rs, 4)]), VFMAI(T2g, T2d), ms, &(x[0]));
cannam@167 205 ST(&(x[WS(rs, 16)]), VFNMSI(T2g, T2d), ms, &(x[0]));
cannam@167 206 }
cannam@167 207 {
cannam@167 208 V T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X;
cannam@167 209 T1W = VSUB(T1M, T1T);
cannam@167 210 T1U = VADD(T1M, T1T);
cannam@167 211 T1V = VFNMS(LDK(KP250000000), T1U, T1F);
cannam@167 212 T1Y = VSUB(T1P, T1S);
cannam@167 213 T1Z = VSUB(T1I, T1L);
cannam@167 214 T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y));
cannam@167 215 T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z));
cannam@167 216 ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0]));
cannam@167 217 T21 = VFMA(LDK(KP559016994), T1W, T1V);
cannam@167 218 ST(&(x[WS(rs, 6)]), VFNMSI(T22, T21), ms, &(x[0]));
cannam@167 219 ST(&(x[WS(rs, 14)]), VFMAI(T22, T21), ms, &(x[0]));
cannam@167 220 T1X = VFNMS(LDK(KP559016994), T1W, T1V);
cannam@167 221 ST(&(x[WS(rs, 2)]), VFMAI(T20, T1X), ms, &(x[0]));
cannam@167 222 ST(&(x[WS(rs, 18)]), VFNMSI(T20, T1X), ms, &(x[0]));
cannam@167 223 }
cannam@167 224 {
cannam@167 225 V T1k, T1r, T1z, T1w, T1o, T1y, T1h, T1v;
cannam@167 226 T1k = VFMA(LDK(KP618033988), T1j, T1i);
cannam@167 227 T1r = VFMA(LDK(KP618033988), T1q, T1p);
cannam@167 228 T1z = VFNMS(LDK(KP618033988), T1p, T1q);
cannam@167 229 T1w = VFNMS(LDK(KP618033988), T1i, T1j);
cannam@167 230 {
cannam@167 231 V T1m, T1n, T1f, T1g;
cannam@167 232 T1m = VFNMS(LDK(KP250000000), T1d, TM);
cannam@167 233 T1n = VSUB(T1c, TY);
cannam@167 234 T1o = VFNMS(LDK(KP559016994), T1n, T1m);
cannam@167 235 T1y = VFMA(LDK(KP559016994), T1n, T1m);
cannam@167 236 T1f = VFNMS(LDK(KP250000000), TF, T7);
cannam@167 237 T1g = VSUB(Tp, TE);
cannam@167 238 T1h = VFMA(LDK(KP559016994), T1g, T1f);
cannam@167 239 T1v = VFNMS(LDK(KP559016994), T1g, T1f);
cannam@167 240 }
cannam@167 241 {
cannam@167 242 V T1l, T1s, T1B, T1C;
cannam@167 243 T1l = VFMA(LDK(KP951056516), T1k, T1h);
cannam@167 244 T1s = VFMA(LDK(KP951056516), T1r, T1o);
cannam@167 245 ST(&(x[WS(rs, 1)]), VFNMSI(T1s, T1l), ms, &(x[WS(rs, 1)]));
cannam@167 246 ST(&(x[WS(rs, 19)]), VFMAI(T1s, T1l), ms, &(x[WS(rs, 1)]));
cannam@167 247 T1B = VFMA(LDK(KP951056516), T1w, T1v);
cannam@167 248 T1C = VFMA(LDK(KP951056516), T1z, T1y);
cannam@167 249 ST(&(x[WS(rs, 13)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)]));
cannam@167 250 ST(&(x[WS(rs, 7)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)]));
cannam@167 251 }
cannam@167 252 {
cannam@167 253 V T1t, T1u, T1x, T1A;
cannam@167 254 T1t = VFNMS(LDK(KP951056516), T1k, T1h);
cannam@167 255 T1u = VFNMS(LDK(KP951056516), T1r, T1o);
cannam@167 256 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@167 257 ST(&(x[WS(rs, 11)]), VFMAI(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@167 258 T1x = VFNMS(LDK(KP951056516), T1w, T1v);
cannam@167 259 T1A = VFNMS(LDK(KP951056516), T1z, T1y);
cannam@167 260 ST(&(x[WS(rs, 17)]), VFNMSI(T1A, T1x), ms, &(x[WS(rs, 1)]));
cannam@167 261 ST(&(x[WS(rs, 3)]), VFMAI(T1A, T1x), ms, &(x[WS(rs, 1)]));
cannam@167 262 }
cannam@167 263 }
cannam@167 264 }
cannam@167 265 }
cannam@167 266 }
cannam@167 267 VLEAVE();
cannam@167 268 }
cannam@167 269
cannam@167 270 static const tw_instr twinstr[] = {
cannam@167 271 VTW(0, 1),
cannam@167 272 VTW(0, 3),
cannam@167 273 VTW(0, 9),
cannam@167 274 VTW(0, 19),
cannam@167 275 {TW_NEXT, VL, 0}
cannam@167 276 };
cannam@167 277
cannam@167 278 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 };
cannam@167 279
cannam@167 280 void XSIMD(codelet_t3fv_20) (planner *p) {
cannam@167 281 X(kdft_dit_register) (p, t3fv_20, &desc);
cannam@167 282 }
cannam@167 283 #else
cannam@167 284
cannam@167 285 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include dft/simd/t3f.h */
cannam@167 286
cannam@167 287 /*
cannam@167 288 * This function contains 138 FP additions, 92 FP multiplications,
cannam@167 289 * (or, 126 additions, 80 multiplications, 12 fused multiply/add),
cannam@167 290 * 73 stack variables, 4 constants, and 40 memory accesses
cannam@167 291 */
cannam@167 292 #include "dft/simd/t3f.h"
cannam@167 293
cannam@167 294 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 295 {
cannam@167 296 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@167 297 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 298 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 299 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 300 {
cannam@167 301 INT m;
cannam@167 302 R *x;
cannam@167 303 x = ri;
cannam@167 304 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
cannam@167 305 V T2, T8, T9, TA, T3, Tc, T4, TZ, T18, Tl, Tq, Tx, TU, Td, Te;
cannam@167 306 V T15, Ti, Tt, TJ;
cannam@167 307 T2 = LDW(&(W[0]));
cannam@167 308 T8 = LDW(&(W[TWVL * 2]));
cannam@167 309 T9 = VZMUL(T2, T8);
cannam@167 310 TA = VZMULJ(T2, T8);
cannam@167 311 T3 = LDW(&(W[TWVL * 4]));
cannam@167 312 Tc = VZMULJ(T9, T3);
cannam@167 313 T4 = VZMUL(T2, T3);
cannam@167 314 TZ = VZMUL(T9, T3);
cannam@167 315 T18 = VZMULJ(TA, T3);
cannam@167 316 Tl = VZMULJ(T8, T3);
cannam@167 317 Tq = VZMULJ(T2, T3);
cannam@167 318 Tx = VZMUL(T8, T3);
cannam@167 319 TU = VZMUL(TA, T3);
cannam@167 320 Td = LDW(&(W[TWVL * 6]));
cannam@167 321 Te = VZMULJ(Tc, Td);
cannam@167 322 T15 = VZMULJ(TA, Td);
cannam@167 323 Ti = VZMULJ(T8, Td);
cannam@167 324 Tt = VZMULJ(T2, Td);
cannam@167 325 TJ = VZMULJ(T9, Td);
cannam@167 326 {
cannam@167 327 V T7, TM, T1U, T2d, T1i, T1p, T1q, T1j, Tp, TE, TF, T26, T27, T2b, T1M;
cannam@167 328 V T1P, T1V, TY, T1c, T1d, T23, T24, T2a, T1F, T1I, T1W, TG, T1e;
cannam@167 329 {
cannam@167 330 V T1, TL, T6, TI, TK, T5, TH, T1S, T1T;
cannam@167 331 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 332 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@167 333 TL = VZMULJ(TJ, TK);
cannam@167 334 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 335 T6 = VZMULJ(T4, T5);
cannam@167 336 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 337 TI = VZMULJ(Tc, TH);
cannam@167 338 T7 = VSUB(T1, T6);
cannam@167 339 TM = VSUB(TI, TL);
cannam@167 340 T1S = VADD(T1, T6);
cannam@167 341 T1T = VADD(TI, TL);
cannam@167 342 T1U = VSUB(T1S, T1T);
cannam@167 343 T2d = VADD(T1S, T1T);
cannam@167 344 }
cannam@167 345 {
cannam@167 346 V Th, T1K, T14, T1E, T1b, T1H, To, T1N, Tw, T1D, TR, T1L, TX, T1O, TD;
cannam@167 347 V T1G;
cannam@167 348 {
cannam@167 349 V Tb, Tg, Ta, Tf;
cannam@167 350 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 351 Tb = VZMULJ(T9, Ta);
cannam@167 352 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 353 Tg = VZMULJ(Te, Tf);
cannam@167 354 Th = VSUB(Tb, Tg);
cannam@167 355 T1K = VADD(Tb, Tg);
cannam@167 356 }
cannam@167 357 {
cannam@167 358 V T11, T13, T10, T12;
cannam@167 359 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 360 T11 = VZMULJ(TZ, T10);
cannam@167 361 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 362 T13 = VZMULJ(T8, T12);
cannam@167 363 T14 = VSUB(T11, T13);
cannam@167 364 T1E = VADD(T11, T13);
cannam@167 365 }
cannam@167 366 {
cannam@167 367 V T17, T1a, T16, T19;
cannam@167 368 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
cannam@167 369 T17 = VZMULJ(T15, T16);
cannam@167 370 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 371 T1a = VZMULJ(T18, T19);
cannam@167 372 T1b = VSUB(T17, T1a);
cannam@167 373 T1H = VADD(T17, T1a);
cannam@167 374 }
cannam@167 375 {
cannam@167 376 V Tk, Tn, Tj, Tm;
cannam@167 377 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
cannam@167 378 Tk = VZMULJ(Ti, Tj);
cannam@167 379 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 380 Tn = VZMULJ(Tl, Tm);
cannam@167 381 To = VSUB(Tk, Tn);
cannam@167 382 T1N = VADD(Tk, Tn);
cannam@167 383 }
cannam@167 384 {
cannam@167 385 V Ts, Tv, Tr, Tu;
cannam@167 386 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 387 Ts = VZMULJ(Tq, Tr);
cannam@167 388 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
cannam@167 389 Tv = VZMULJ(Tt, Tu);
cannam@167 390 Tw = VSUB(Ts, Tv);
cannam@167 391 T1D = VADD(Ts, Tv);
cannam@167 392 }
cannam@167 393 {
cannam@167 394 V TO, TQ, TN, TP;
cannam@167 395 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 396 TO = VZMULJ(T3, TN);
cannam@167 397 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
cannam@167 398 TQ = VZMULJ(Td, TP);
cannam@167 399 TR = VSUB(TO, TQ);
cannam@167 400 T1L = VADD(TO, TQ);
cannam@167 401 }
cannam@167 402 {
cannam@167 403 V TT, TW, TS, TV;
cannam@167 404 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 405 TT = VZMULJ(T2, TS);
cannam@167 406 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 407 TW = VZMULJ(TU, TV);
cannam@167 408 TX = VSUB(TT, TW);
cannam@167 409 T1O = VADD(TT, TW);
cannam@167 410 }
cannam@167 411 {
cannam@167 412 V Tz, TC, Ty, TB;
cannam@167 413 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 414 Tz = VZMULJ(Tx, Ty);
cannam@167 415 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 416 TC = VZMULJ(TA, TB);
cannam@167 417 TD = VSUB(Tz, TC);
cannam@167 418 T1G = VADD(Tz, TC);
cannam@167 419 }
cannam@167 420 T1i = VSUB(TX, TR);
cannam@167 421 T1p = VSUB(Th, To);
cannam@167 422 T1q = VSUB(Tw, TD);
cannam@167 423 T1j = VSUB(T1b, T14);
cannam@167 424 Tp = VADD(Th, To);
cannam@167 425 TE = VADD(Tw, TD);
cannam@167 426 TF = VADD(Tp, TE);
cannam@167 427 T26 = VADD(T1D, T1E);
cannam@167 428 T27 = VADD(T1G, T1H);
cannam@167 429 T2b = VADD(T26, T27);
cannam@167 430 T1M = VSUB(T1K, T1L);
cannam@167 431 T1P = VSUB(T1N, T1O);
cannam@167 432 T1V = VADD(T1M, T1P);
cannam@167 433 TY = VADD(TR, TX);
cannam@167 434 T1c = VADD(T14, T1b);
cannam@167 435 T1d = VADD(TY, T1c);
cannam@167 436 T23 = VADD(T1K, T1L);
cannam@167 437 T24 = VADD(T1N, T1O);
cannam@167 438 T2a = VADD(T23, T24);
cannam@167 439 T1F = VSUB(T1D, T1E);
cannam@167 440 T1I = VSUB(T1G, T1H);
cannam@167 441 T1W = VADD(T1F, T1I);
cannam@167 442 }
cannam@167 443 TG = VADD(T7, TF);
cannam@167 444 T1e = VBYI(VADD(TM, T1d));
cannam@167 445 ST(&(x[WS(rs, 5)]), VSUB(TG, T1e), ms, &(x[WS(rs, 1)]));
cannam@167 446 ST(&(x[WS(rs, 15)]), VADD(TG, T1e), ms, &(x[WS(rs, 1)]));
cannam@167 447 {
cannam@167 448 V T2c, T2e, T2f, T29, T2i, T25, T28, T2h, T2g;
cannam@167 449 T2c = VMUL(LDK(KP559016994), VSUB(T2a, T2b));
cannam@167 450 T2e = VADD(T2a, T2b);
cannam@167 451 T2f = VFNMS(LDK(KP250000000), T2e, T2d);
cannam@167 452 T25 = VSUB(T23, T24);
cannam@167 453 T28 = VSUB(T26, T27);
cannam@167 454 T29 = VBYI(VFMA(LDK(KP951056516), T25, VMUL(LDK(KP587785252), T28)));
cannam@167 455 T2i = VBYI(VFNMS(LDK(KP587785252), T25, VMUL(LDK(KP951056516), T28)));
cannam@167 456 ST(&(x[0]), VADD(T2d, T2e), ms, &(x[0]));
cannam@167 457 T2h = VSUB(T2f, T2c);
cannam@167 458 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0]));
cannam@167 459 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0]));
cannam@167 460 T2g = VADD(T2c, T2f);
cannam@167 461 ST(&(x[WS(rs, 4)]), VADD(T29, T2g), ms, &(x[0]));
cannam@167 462 ST(&(x[WS(rs, 16)]), VSUB(T2g, T29), ms, &(x[0]));
cannam@167 463 }
cannam@167 464 {
cannam@167 465 V T1Z, T1X, T1Y, T1R, T22, T1J, T1Q, T21, T20;
cannam@167 466 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W));
cannam@167 467 T1X = VADD(T1V, T1W);
cannam@167 468 T1Y = VFNMS(LDK(KP250000000), T1X, T1U);
cannam@167 469 T1J = VSUB(T1F, T1I);
cannam@167 470 T1Q = VSUB(T1M, T1P);
cannam@167 471 T1R = VBYI(VFNMS(LDK(KP587785252), T1Q, VMUL(LDK(KP951056516), T1J)));
cannam@167 472 T22 = VBYI(VFMA(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J)));
cannam@167 473 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0]));
cannam@167 474 T21 = VADD(T1Z, T1Y);
cannam@167 475 ST(&(x[WS(rs, 6)]), VSUB(T21, T22), ms, &(x[0]));
cannam@167 476 ST(&(x[WS(rs, 14)]), VADD(T22, T21), ms, &(x[0]));
cannam@167 477 T20 = VSUB(T1Y, T1Z);
cannam@167 478 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0]));
cannam@167 479 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0]));
cannam@167 480 }
cannam@167 481 {
cannam@167 482 V T1k, T1r, T1z, T1w, T1o, T1y, T1h, T1v;
cannam@167 483 T1k = VFMA(LDK(KP951056516), T1i, VMUL(LDK(KP587785252), T1j));
cannam@167 484 T1r = VFMA(LDK(KP951056516), T1p, VMUL(LDK(KP587785252), T1q));
cannam@167 485 T1z = VFNMS(LDK(KP587785252), T1p, VMUL(LDK(KP951056516), T1q));
cannam@167 486 T1w = VFNMS(LDK(KP587785252), T1i, VMUL(LDK(KP951056516), T1j));
cannam@167 487 {
cannam@167 488 V T1m, T1n, T1f, T1g;
cannam@167 489 T1m = VFMS(LDK(KP250000000), T1d, TM);
cannam@167 490 T1n = VMUL(LDK(KP559016994), VSUB(T1c, TY));
cannam@167 491 T1o = VADD(T1m, T1n);
cannam@167 492 T1y = VSUB(T1n, T1m);
cannam@167 493 T1f = VMUL(LDK(KP559016994), VSUB(Tp, TE));
cannam@167 494 T1g = VFNMS(LDK(KP250000000), TF, T7);
cannam@167 495 T1h = VADD(T1f, T1g);
cannam@167 496 T1v = VSUB(T1g, T1f);
cannam@167 497 }
cannam@167 498 {
cannam@167 499 V T1l, T1s, T1B, T1C;
cannam@167 500 T1l = VADD(T1h, T1k);
cannam@167 501 T1s = VBYI(VSUB(T1o, T1r));
cannam@167 502 ST(&(x[WS(rs, 19)]), VSUB(T1l, T1s), ms, &(x[WS(rs, 1)]));
cannam@167 503 ST(&(x[WS(rs, 1)]), VADD(T1l, T1s), ms, &(x[WS(rs, 1)]));
cannam@167 504 T1B = VADD(T1v, T1w);
cannam@167 505 T1C = VBYI(VADD(T1z, T1y));
cannam@167 506 ST(&(x[WS(rs, 13)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)]));
cannam@167 507 ST(&(x[WS(rs, 7)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)]));
cannam@167 508 }
cannam@167 509 {
cannam@167 510 V T1t, T1u, T1x, T1A;
cannam@167 511 T1t = VSUB(T1h, T1k);
cannam@167 512 T1u = VBYI(VADD(T1r, T1o));
cannam@167 513 ST(&(x[WS(rs, 11)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)]));
cannam@167 514 ST(&(x[WS(rs, 9)]), VADD(T1t, T1u), ms, &(x[WS(rs, 1)]));
cannam@167 515 T1x = VSUB(T1v, T1w);
cannam@167 516 T1A = VBYI(VSUB(T1y, T1z));
cannam@167 517 ST(&(x[WS(rs, 17)]), VSUB(T1x, T1A), ms, &(x[WS(rs, 1)]));
cannam@167 518 ST(&(x[WS(rs, 3)]), VADD(T1x, T1A), ms, &(x[WS(rs, 1)]));
cannam@167 519 }
cannam@167 520 }
cannam@167 521 }
cannam@167 522 }
cannam@167 523 }
cannam@167 524 VLEAVE();
cannam@167 525 }
cannam@167 526
cannam@167 527 static const tw_instr twinstr[] = {
cannam@167 528 VTW(0, 1),
cannam@167 529 VTW(0, 3),
cannam@167 530 VTW(0, 9),
cannam@167 531 VTW(0, 19),
cannam@167 532 {TW_NEXT, VL, 0}
cannam@167 533 };
cannam@167 534
cannam@167 535 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 };
cannam@167 536
cannam@167 537 void XSIMD(codelet_t3fv_20) (planner *p) {
cannam@167 538 X(kdft_dit_register) (p, t3fv_20, &desc);
cannam@167 539 }
cannam@167 540 #endif