annotate src/fftw-3.3.8/dft/simd/common/t2bv_8.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:06:01 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2bv_8 -include dft/simd/t2b.h -sign 1 */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 33 FP additions, 24 FP multiplications,
cannam@167 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
cannam@167 33 * 24 stack variables, 1 constants, and 16 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t2b.h"
cannam@167 36
cannam@167 37 static void t2bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 40 {
cannam@167 41 INT m;
cannam@167 42 R *x;
cannam@167 43 x = ii;
cannam@167 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@167 45 V T4, Tq, Tl, Tr, T9, Tt, Te, Tu, T1, T3, T2;
cannam@167 46 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 48 T3 = BYTW(&(W[TWVL * 6]), T2);
cannam@167 49 T4 = VSUB(T1, T3);
cannam@167 50 Tq = VADD(T1, T3);
cannam@167 51 {
cannam@167 52 V Ti, Tk, Th, Tj;
cannam@167 53 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 54 Ti = BYTW(&(W[TWVL * 2]), Th);
cannam@167 55 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 56 Tk = BYTW(&(W[TWVL * 10]), Tj);
cannam@167 57 Tl = VSUB(Ti, Tk);
cannam@167 58 Tr = VADD(Ti, Tk);
cannam@167 59 }
cannam@167 60 {
cannam@167 61 V T6, T8, T5, T7;
cannam@167 62 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 63 T6 = BYTW(&(W[0]), T5);
cannam@167 64 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 65 T8 = BYTW(&(W[TWVL * 8]), T7);
cannam@167 66 T9 = VSUB(T6, T8);
cannam@167 67 Tt = VADD(T6, T8);
cannam@167 68 }
cannam@167 69 {
cannam@167 70 V Tb, Td, Ta, Tc;
cannam@167 71 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 72 Tb = BYTW(&(W[TWVL * 12]), Ta);
cannam@167 73 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 74 Td = BYTW(&(W[TWVL * 4]), Tc);
cannam@167 75 Te = VSUB(Tb, Td);
cannam@167 76 Tu = VADD(Tb, Td);
cannam@167 77 }
cannam@167 78 {
cannam@167 79 V Ts, Tv, Tw, Tx;
cannam@167 80 Ts = VSUB(Tq, Tr);
cannam@167 81 Tv = VSUB(Tt, Tu);
cannam@167 82 ST(&(x[WS(rs, 6)]), VFNMSI(Tv, Ts), ms, &(x[0]));
cannam@167 83 ST(&(x[WS(rs, 2)]), VFMAI(Tv, Ts), ms, &(x[0]));
cannam@167 84 Tw = VADD(Tq, Tr);
cannam@167 85 Tx = VADD(Tt, Tu);
cannam@167 86 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
cannam@167 87 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
cannam@167 88 {
cannam@167 89 V Tg, To, Tn, Tp, Tf, Tm;
cannam@167 90 Tf = VADD(T9, Te);
cannam@167 91 Tg = VFNMS(LDK(KP707106781), Tf, T4);
cannam@167 92 To = VFMA(LDK(KP707106781), Tf, T4);
cannam@167 93 Tm = VSUB(T9, Te);
cannam@167 94 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
cannam@167 95 Tp = VFMA(LDK(KP707106781), Tm, Tl);
cannam@167 96 ST(&(x[WS(rs, 3)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
cannam@167 97 ST(&(x[WS(rs, 7)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@167 98 ST(&(x[WS(rs, 5)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
cannam@167 99 ST(&(x[WS(rs, 1)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@167 100 }
cannam@167 101 }
cannam@167 102 }
cannam@167 103 }
cannam@167 104 VLEAVE();
cannam@167 105 }
cannam@167 106
cannam@167 107 static const tw_instr twinstr[] = {
cannam@167 108 VTW(0, 1),
cannam@167 109 VTW(0, 2),
cannam@167 110 VTW(0, 3),
cannam@167 111 VTW(0, 4),
cannam@167 112 VTW(0, 5),
cannam@167 113 VTW(0, 6),
cannam@167 114 VTW(0, 7),
cannam@167 115 {TW_NEXT, VL, 0}
cannam@167 116 };
cannam@167 117
cannam@167 118 static const ct_desc desc = { 8, XSIMD_STRING("t2bv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
cannam@167 119
cannam@167 120 void XSIMD(codelet_t2bv_8) (planner *p) {
cannam@167 121 X(kdft_dit_register) (p, t2bv_8, &desc);
cannam@167 122 }
cannam@167 123 #else
cannam@167 124
cannam@167 125 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2bv_8 -include dft/simd/t2b.h -sign 1 */
cannam@167 126
cannam@167 127 /*
cannam@167 128 * This function contains 33 FP additions, 16 FP multiplications,
cannam@167 129 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
cannam@167 130 * 24 stack variables, 1 constants, and 16 memory accesses
cannam@167 131 */
cannam@167 132 #include "dft/simd/t2b.h"
cannam@167 133
cannam@167 134 static void t2bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 135 {
cannam@167 136 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 137 {
cannam@167 138 INT m;
cannam@167 139 R *x;
cannam@167 140 x = ii;
cannam@167 141 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@167 142 V Tl, Tq, Tg, Tr, T5, Tt, Ta, Tu, Ti, Tk, Tj;
cannam@167 143 Ti = LD(&(x[0]), ms, &(x[0]));
cannam@167 144 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 145 Tk = BYTW(&(W[TWVL * 6]), Tj);
cannam@167 146 Tl = VSUB(Ti, Tk);
cannam@167 147 Tq = VADD(Ti, Tk);
cannam@167 148 {
cannam@167 149 V Td, Tf, Tc, Te;
cannam@167 150 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 151 Td = BYTW(&(W[TWVL * 2]), Tc);
cannam@167 152 Te = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 153 Tf = BYTW(&(W[TWVL * 10]), Te);
cannam@167 154 Tg = VSUB(Td, Tf);
cannam@167 155 Tr = VADD(Td, Tf);
cannam@167 156 }
cannam@167 157 {
cannam@167 158 V T2, T4, T1, T3;
cannam@167 159 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 160 T2 = BYTW(&(W[0]), T1);
cannam@167 161 T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 162 T4 = BYTW(&(W[TWVL * 8]), T3);
cannam@167 163 T5 = VSUB(T2, T4);
cannam@167 164 Tt = VADD(T2, T4);
cannam@167 165 }
cannam@167 166 {
cannam@167 167 V T7, T9, T6, T8;
cannam@167 168 T6 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 169 T7 = BYTW(&(W[TWVL * 12]), T6);
cannam@167 170 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 171 T9 = BYTW(&(W[TWVL * 4]), T8);
cannam@167 172 Ta = VSUB(T7, T9);
cannam@167 173 Tu = VADD(T7, T9);
cannam@167 174 }
cannam@167 175 {
cannam@167 176 V Ts, Tv, Tw, Tx;
cannam@167 177 Ts = VSUB(Tq, Tr);
cannam@167 178 Tv = VBYI(VSUB(Tt, Tu));
cannam@167 179 ST(&(x[WS(rs, 6)]), VSUB(Ts, Tv), ms, &(x[0]));
cannam@167 180 ST(&(x[WS(rs, 2)]), VADD(Ts, Tv), ms, &(x[0]));
cannam@167 181 Tw = VADD(Tq, Tr);
cannam@167 182 Tx = VADD(Tt, Tu);
cannam@167 183 ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
cannam@167 184 ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
cannam@167 185 {
cannam@167 186 V Th, To, Tn, Tp, Tb, Tm;
cannam@167 187 Tb = VMUL(LDK(KP707106781), VSUB(T5, Ta));
cannam@167 188 Th = VBYI(VSUB(Tb, Tg));
cannam@167 189 To = VBYI(VADD(Tg, Tb));
cannam@167 190 Tm = VMUL(LDK(KP707106781), VADD(T5, Ta));
cannam@167 191 Tn = VSUB(Tl, Tm);
cannam@167 192 Tp = VADD(Tl, Tm);
cannam@167 193 ST(&(x[WS(rs, 3)]), VADD(Th, Tn), ms, &(x[WS(rs, 1)]));
cannam@167 194 ST(&(x[WS(rs, 7)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@167 195 ST(&(x[WS(rs, 5)]), VSUB(Tn, Th), ms, &(x[WS(rs, 1)]));
cannam@167 196 ST(&(x[WS(rs, 1)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
cannam@167 197 }
cannam@167 198 }
cannam@167 199 }
cannam@167 200 }
cannam@167 201 VLEAVE();
cannam@167 202 }
cannam@167 203
cannam@167 204 static const tw_instr twinstr[] = {
cannam@167 205 VTW(0, 1),
cannam@167 206 VTW(0, 2),
cannam@167 207 VTW(0, 3),
cannam@167 208 VTW(0, 4),
cannam@167 209 VTW(0, 5),
cannam@167 210 VTW(0, 6),
cannam@167 211 VTW(0, 7),
cannam@167 212 {TW_NEXT, VL, 0}
cannam@167 213 };
cannam@167 214
cannam@167 215 static const ct_desc desc = { 8, XSIMD_STRING("t2bv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
cannam@167 216
cannam@167 217 void XSIMD(codelet_t2bv_8) (planner *p) {
cannam@167 218 X(kdft_dit_register) (p, t2bv_8, &desc);
cannam@167 219 }
cannam@167 220 #endif