annotate src/fftw-3.3.8/dft/simd/common/n2bv_12.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:11 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 48 FP additions, 20 FP multiplications,
cannam@167 32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
cannam@167 33 * 33 stack variables, 2 constants, and 30 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/n2b.h"
cannam@167 36
cannam@167 37 static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@167 38 {
cannam@167 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 41 {
cannam@167 42 INT i;
cannam@167 43 const R *xi;
cannam@167 44 R *xo;
cannam@167 45 xi = ii;
cannam@167 46 xo = io;
cannam@167 47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@167 48 V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts;
cannam@167 49 {
cannam@167 50 V T1, T6, T4, Tz, T9, TA;
cannam@167 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@167 52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@167 53 {
cannam@167 54 V T2, T3, T7, T8;
cannam@167 55 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@167 56 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@167 57 T4 = VADD(T2, T3);
cannam@167 58 Tz = VSUB(T2, T3);
cannam@167 59 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@167 60 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@167 61 T9 = VADD(T7, T8);
cannam@167 62 TA = VSUB(T7, T8);
cannam@167 63 }
cannam@167 64 T5 = VADD(T1, T4);
cannam@167 65 Ta = VADD(T6, T9);
cannam@167 66 TJ = VSUB(Tz, TA);
cannam@167 67 TB = VADD(Tz, TA);
cannam@167 68 Tq = VFNMS(LDK(KP500000000), T9, T6);
cannam@167 69 Tp = VFNMS(LDK(KP500000000), T4, T1);
cannam@167 70 }
cannam@167 71 {
cannam@167 72 V Tc, Th, Tf, Tw, Tk, Tx;
cannam@167 73 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@167 74 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@167 75 {
cannam@167 76 V Td, Te, Ti, Tj;
cannam@167 77 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@167 78 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@167 79 Tf = VADD(Td, Te);
cannam@167 80 Tw = VSUB(Td, Te);
cannam@167 81 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@167 82 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@167 83 Tk = VADD(Ti, Tj);
cannam@167 84 Tx = VSUB(Tj, Ti);
cannam@167 85 }
cannam@167 86 Tg = VADD(Tc, Tf);
cannam@167 87 Tl = VADD(Th, Tk);
cannam@167 88 TG = VADD(Tw, Tx);
cannam@167 89 Ty = VSUB(Tw, Tx);
cannam@167 90 Tt = VFNMS(LDK(KP500000000), Tk, Th);
cannam@167 91 Ts = VFNMS(LDK(KP500000000), Tf, Tc);
cannam@167 92 }
cannam@167 93 {
cannam@167 94 V TN, TO, TP, TQ, TR, TS;
cannam@167 95 {
cannam@167 96 V Tb, Tm, Tn, To;
cannam@167 97 Tb = VSUB(T5, Ta);
cannam@167 98 Tm = VSUB(Tg, Tl);
cannam@167 99 TN = VFNMSI(Tm, Tb);
cannam@167 100 STM2(&(xo[6]), TN, ovs, &(xo[2]));
cannam@167 101 TO = VFMAI(Tm, Tb);
cannam@167 102 STM2(&(xo[18]), TO, ovs, &(xo[2]));
cannam@167 103 Tn = VADD(T5, Ta);
cannam@167 104 To = VADD(Tg, Tl);
cannam@167 105 TP = VSUB(Tn, To);
cannam@167 106 STM2(&(xo[12]), TP, ovs, &(xo[0]));
cannam@167 107 TQ = VADD(Tn, To);
cannam@167 108 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
cannam@167 109 }
cannam@167 110 {
cannam@167 111 V TC, TE, Tv, TD, Tr, Tu, TT, TU;
cannam@167 112 TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
cannam@167 113 TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
cannam@167 114 Tr = VADD(Tp, Tq);
cannam@167 115 Tu = VADD(Ts, Tt);
cannam@167 116 Tv = VSUB(Tr, Tu);
cannam@167 117 TD = VADD(Tr, Tu);
cannam@167 118 TR = VFNMSI(TC, Tv);
cannam@167 119 STM2(&(xo[20]), TR, ovs, &(xo[0]));
cannam@167 120 TS = VFMAI(TE, TD);
cannam@167 121 STM2(&(xo[8]), TS, ovs, &(xo[0]));
cannam@167 122 TT = VFMAI(TC, Tv);
cannam@167 123 STM2(&(xo[4]), TT, ovs, &(xo[0]));
cannam@167 124 STN2(&(xo[4]), TT, TN, ovs);
cannam@167 125 TU = VFNMSI(TE, TD);
cannam@167 126 STM2(&(xo[16]), TU, ovs, &(xo[0]));
cannam@167 127 STN2(&(xo[16]), TU, TO, ovs);
cannam@167 128 }
cannam@167 129 {
cannam@167 130 V TH, TL, TK, TM, TF, TI;
cannam@167 131 TF = VSUB(Tp, Tq);
cannam@167 132 TH = VFNMS(LDK(KP866025403), TG, TF);
cannam@167 133 TL = VFMA(LDK(KP866025403), TG, TF);
cannam@167 134 TI = VSUB(Ts, Tt);
cannam@167 135 TK = VFMA(LDK(KP866025403), TJ, TI);
cannam@167 136 TM = VFNMS(LDK(KP866025403), TJ, TI);
cannam@167 137 {
cannam@167 138 V TV, TW, TX, TY;
cannam@167 139 TV = VFMAI(TK, TH);
cannam@167 140 STM2(&(xo[2]), TV, ovs, &(xo[2]));
cannam@167 141 STN2(&(xo[0]), TQ, TV, ovs);
cannam@167 142 TW = VFNMSI(TM, TL);
cannam@167 143 STM2(&(xo[14]), TW, ovs, &(xo[2]));
cannam@167 144 STN2(&(xo[12]), TP, TW, ovs);
cannam@167 145 TX = VFNMSI(TK, TH);
cannam@167 146 STM2(&(xo[22]), TX, ovs, &(xo[2]));
cannam@167 147 STN2(&(xo[20]), TR, TX, ovs);
cannam@167 148 TY = VFMAI(TM, TL);
cannam@167 149 STM2(&(xo[10]), TY, ovs, &(xo[2]));
cannam@167 150 STN2(&(xo[8]), TS, TY, ovs);
cannam@167 151 }
cannam@167 152 }
cannam@167 153 }
cannam@167 154 }
cannam@167 155 }
cannam@167 156 VLEAVE();
cannam@167 157 }
cannam@167 158
cannam@167 159 static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 };
cannam@167 160
cannam@167 161 void XSIMD(codelet_n2bv_12) (planner *p) {
cannam@167 162 X(kdft_register) (p, n2bv_12, &desc);
cannam@167 163 }
cannam@167 164
cannam@167 165 #else
cannam@167 166
cannam@167 167 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
cannam@167 168
cannam@167 169 /*
cannam@167 170 * This function contains 48 FP additions, 8 FP multiplications,
cannam@167 171 * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
cannam@167 172 * 33 stack variables, 2 constants, and 30 memory accesses
cannam@167 173 */
cannam@167 174 #include "dft/simd/n2b.h"
cannam@167 175
cannam@167 176 static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@167 177 {
cannam@167 178 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@167 179 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 180 {
cannam@167 181 INT i;
cannam@167 182 const R *xi;
cannam@167 183 R *xo;
cannam@167 184 xi = ii;
cannam@167 185 xo = io;
cannam@167 186 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
cannam@167 187 V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
cannam@167 188 {
cannam@167 189 V T1, T6, T4, Tk, T9, Tl;
cannam@167 190 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@167 191 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
cannam@167 192 {
cannam@167 193 V T2, T3, T7, T8;
cannam@167 194 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@167 195 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
cannam@167 196 T4 = VADD(T2, T3);
cannam@167 197 Tk = VSUB(T2, T3);
cannam@167 198 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
cannam@167 199 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@167 200 T9 = VADD(T7, T8);
cannam@167 201 Tl = VSUB(T7, T8);
cannam@167 202 }
cannam@167 203 T5 = VFNMS(LDK(KP500000000), T4, T1);
cannam@167 204 Ta = VFNMS(LDK(KP500000000), T9, T6);
cannam@167 205 TG = VADD(T6, T9);
cannam@167 206 TF = VADD(T1, T4);
cannam@167 207 Ty = VADD(Tk, Tl);
cannam@167 208 Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
cannam@167 209 }
cannam@167 210 {
cannam@167 211 V Tn, Tq, Te, To, Th, Tr;
cannam@167 212 Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@167 213 Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
cannam@167 214 {
cannam@167 215 V Tc, Td, Tf, Tg;
cannam@167 216 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
cannam@167 217 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
cannam@167 218 Te = VSUB(Tc, Td);
cannam@167 219 To = VADD(Tc, Td);
cannam@167 220 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@167 221 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
cannam@167 222 Th = VSUB(Tf, Tg);
cannam@167 223 Tr = VADD(Tf, Tg);
cannam@167 224 }
cannam@167 225 Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
cannam@167 226 Tp = VFNMS(LDK(KP500000000), To, Tn);
cannam@167 227 TJ = VADD(Tq, Tr);
cannam@167 228 TI = VADD(Tn, To);
cannam@167 229 Tx = VADD(Te, Th);
cannam@167 230 Ts = VFNMS(LDK(KP500000000), Tr, Tq);
cannam@167 231 }
cannam@167 232 {
cannam@167 233 V TN, TO, TP, TQ, TR, TS;
cannam@167 234 {
cannam@167 235 V TH, TK, TL, TM;
cannam@167 236 TH = VSUB(TF, TG);
cannam@167 237 TK = VBYI(VSUB(TI, TJ));
cannam@167 238 TN = VSUB(TH, TK);
cannam@167 239 STM2(&(xo[6]), TN, ovs, &(xo[2]));
cannam@167 240 TO = VADD(TH, TK);
cannam@167 241 STM2(&(xo[18]), TO, ovs, &(xo[2]));
cannam@167 242 TL = VADD(TF, TG);
cannam@167 243 TM = VADD(TI, TJ);
cannam@167 244 TP = VSUB(TL, TM);
cannam@167 245 STM2(&(xo[12]), TP, ovs, &(xo[0]));
cannam@167 246 TQ = VADD(TL, TM);
cannam@167 247 STM2(&(xo[0]), TQ, ovs, &(xo[0]));
cannam@167 248 }
cannam@167 249 {
cannam@167 250 V Tj, Tv, Tu, Tw, Tb, Tt, TT, TU;
cannam@167 251 Tb = VSUB(T5, Ta);
cannam@167 252 Tj = VSUB(Tb, Ti);
cannam@167 253 Tv = VADD(Tb, Ti);
cannam@167 254 Tt = VSUB(Tp, Ts);
cannam@167 255 Tu = VBYI(VADD(Tm, Tt));
cannam@167 256 Tw = VBYI(VSUB(Tt, Tm));
cannam@167 257 TR = VSUB(Tj, Tu);
cannam@167 258 STM2(&(xo[22]), TR, ovs, &(xo[2]));
cannam@167 259 TS = VADD(Tv, Tw);
cannam@167 260 STM2(&(xo[10]), TS, ovs, &(xo[2]));
cannam@167 261 TT = VADD(Tj, Tu);
cannam@167 262 STM2(&(xo[2]), TT, ovs, &(xo[2]));
cannam@167 263 STN2(&(xo[0]), TQ, TT, ovs);
cannam@167 264 TU = VSUB(Tv, Tw);
cannam@167 265 STM2(&(xo[14]), TU, ovs, &(xo[2]));
cannam@167 266 STN2(&(xo[12]), TP, TU, ovs);
cannam@167 267 }
cannam@167 268 {
cannam@167 269 V Tz, TD, TC, TE, TA, TB;
cannam@167 270 Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
cannam@167 271 TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
cannam@167 272 TA = VADD(T5, Ta);
cannam@167 273 TB = VADD(Tp, Ts);
cannam@167 274 TC = VSUB(TA, TB);
cannam@167 275 TE = VADD(TA, TB);
cannam@167 276 {
cannam@167 277 V TV, TW, TX, TY;
cannam@167 278 TV = VADD(Tz, TC);
cannam@167 279 STM2(&(xo[4]), TV, ovs, &(xo[0]));
cannam@167 280 STN2(&(xo[4]), TV, TN, ovs);
cannam@167 281 TW = VSUB(TE, TD);
cannam@167 282 STM2(&(xo[16]), TW, ovs, &(xo[0]));
cannam@167 283 STN2(&(xo[16]), TW, TO, ovs);
cannam@167 284 TX = VSUB(TC, Tz);
cannam@167 285 STM2(&(xo[20]), TX, ovs, &(xo[0]));
cannam@167 286 STN2(&(xo[20]), TX, TR, ovs);
cannam@167 287 TY = VADD(TD, TE);
cannam@167 288 STM2(&(xo[8]), TY, ovs, &(xo[0]));
cannam@167 289 STN2(&(xo[8]), TY, TS, ovs);
cannam@167 290 }
cannam@167 291 }
cannam@167 292 }
cannam@167 293 }
cannam@167 294 }
cannam@167 295 VLEAVE();
cannam@167 296 }
cannam@167 297
cannam@167 298 static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 };
cannam@167 299
cannam@167 300 void XSIMD(codelet_n2bv_12) (planner *p) {
cannam@167 301 X(kdft_register) (p, n2bv_12, &desc);
cannam@167 302 }
cannam@167 303
cannam@167 304 #endif