annotate src/fftw-3.3.5/simd-support/simd-generic128.h @ 148:b4bfdf10c4b3

Update Win64 capnp builds to v0.6
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 22 May 2017 18:56:49 +0100
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
cannam@127 6 * with single & double precision by Erik Lindahl.
cannam@127 7 * Romain Dolbeau hereby places his modifications in the public domain.
cannam@127 8 * Erik Lindahl hereby places his modifications in the public domain.
cannam@127 9 *
cannam@127 10 * This program is free software; you can redistribute it and/or modify
cannam@127 11 * it under the terms of the GNU General Public License as published by
cannam@127 12 * the Free Software Foundation; either version 2 of the License, or
cannam@127 13 * (at your option) any later version.
cannam@127 14 *
cannam@127 15 * This program is distributed in the hope that it will be useful,
cannam@127 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 18 * GNU General Public License for more details.
cannam@127 19 *
cannam@127 20 * You should have received a copy of the GNU General Public License
cannam@127 21 * along with this program; if not, write to the Free Software
cannam@127 22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 23 *
cannam@127 24 */
cannam@127 25
cannam@127 26
cannam@127 27 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
cannam@127 28 # error "Generic simd128 only works in single or double precision"
cannam@127 29 #endif
cannam@127 30
cannam@127 31 #define SIMD_SUFFIX _generic_simd128 /* for renaming */
cannam@127 32
cannam@127 33 #ifdef FFTW_SINGLE
cannam@127 34 # define DS(d,s) s /* single-precision option */
cannam@127 35 # define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
cannam@127 36 # define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
cannam@127 37 # define DVK(var, val) V var = {val,val,val,val}
cannam@127 38 #else
cannam@127 39 # define DS(d,s) d /* double-precision option */
cannam@127 40 # define VDUPL(x) (V){x[0],x[0]}
cannam@127 41 # define VDUPH(x) (V){x[1],x[1]}
cannam@127 42 # define DVK(var, val) V var = {val, val}
cannam@127 43 #endif
cannam@127 44
cannam@127 45 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
cannam@127 46 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
cannam@127 47 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
cannam@127 48
cannam@127 49 typedef DS(double,float) V __attribute__ ((vector_size(16)));
cannam@127 50
cannam@127 51 #define VADD(a,b) ((a)+(b))
cannam@127 52 #define VSUB(a,b) ((a)-(b))
cannam@127 53 #define VMUL(a,b) ((a)*(b))
cannam@127 54
cannam@127 55
cannam@127 56 #define LDK(x) x
cannam@127 57
cannam@127 58 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
cannam@127 59 {
cannam@127 60 (void)aligned_like; /* UNUSED */
cannam@127 61 (void)ivs; /* UNUSED */
cannam@127 62 return *(const V *)x;
cannam@127 63 }
cannam@127 64
cannam@127 65 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 66 {
cannam@127 67 (void)aligned_like; /* UNUSED */
cannam@127 68 (void)ovs; /* UNUSED */
cannam@127 69 *(V *)x = v;
cannam@127 70 }
cannam@127 71
cannam@127 72 static inline V LD(const R *x, INT ivs, const R *aligned_like)
cannam@127 73 {
cannam@127 74 (void)aligned_like; /* UNUSED */
cannam@127 75 V res;
cannam@127 76 res[0] = x[0];
cannam@127 77 res[1] = x[1];
cannam@127 78 #ifdef FFTW_SINGLE
cannam@127 79 res[2] = x[ivs];
cannam@127 80 res[3] = x[ivs+1];
cannam@127 81 #endif
cannam@127 82 return res;
cannam@127 83 }
cannam@127 84
cannam@127 85 #ifdef FFTW_SINGLE
cannam@127 86 /* ST has to be separate due to the storage hack requiring reverse order */
cannam@127 87 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 88 {
cannam@127 89 (void)aligned_like; /* UNUSED */
cannam@127 90 (void)ovs; /* UNUSED */
cannam@127 91 *(x + ovs ) = v[2];
cannam@127 92 *(x + ovs + 1) = v[3];
cannam@127 93 *(x ) = v[0];
cannam@127 94 *(x + 1) = v[1];
cannam@127 95 }
cannam@127 96 #else
cannam@127 97 /* FFTW_DOUBLE */
cannam@127 98 # define ST STA
cannam@127 99 #endif
cannam@127 100
cannam@127 101 #ifdef FFTW_SINGLE
cannam@127 102 #define STM2 ST
cannam@127 103 #define STN2(x, v0, v1, ovs) /* nop */
cannam@127 104
cannam@127 105 static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
cannam@127 106 {
cannam@127 107 *(x ) = v0[0];
cannam@127 108 *(x + 1) = v1[0];
cannam@127 109 *(x + 2) = v2[0];
cannam@127 110 *(x + 3) = v3[0];
cannam@127 111 *(x + ovs ) = v0[1];
cannam@127 112 *(x + ovs + 1) = v1[1];
cannam@127 113 *(x + ovs + 2) = v2[1];
cannam@127 114 *(x + ovs + 3) = v3[1];
cannam@127 115 *(x + 2 * ovs ) = v0[2];
cannam@127 116 *(x + 2 * ovs + 1) = v1[2];
cannam@127 117 *(x + 2 * ovs + 2) = v2[2];
cannam@127 118 *(x + 2 * ovs + 3) = v3[2];
cannam@127 119 *(x + 3 * ovs ) = v0[3];
cannam@127 120 *(x + 3 * ovs + 1) = v1[3];
cannam@127 121 *(x + 3 * ovs + 2) = v2[3];
cannam@127 122 *(x + 3 * ovs + 3) = v3[3];
cannam@127 123 }
cannam@127 124 #define STM4(x, v, ovs, aligned_like) /* no-op */
cannam@127 125
cannam@127 126
cannam@127 127 #else
cannam@127 128 /* FFTW_DOUBLE */
cannam@127 129
cannam@127 130 #define STM2 STA
cannam@127 131 #define STN2(x, v0, v1, ovs) /* nop */
cannam@127 132
cannam@127 133 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
cannam@127 134 {
cannam@127 135 (void)aligned_like; /* UNUSED */
cannam@127 136 *(x) = v[0];
cannam@127 137 *(x+ovs) = v[1];
cannam@127 138 }
cannam@127 139 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
cannam@127 140 #endif
cannam@127 141
cannam@127 142
cannam@127 143 static inline V FLIP_RI(V x)
cannam@127 144 {
cannam@127 145 #ifdef FFTW_SINGLE
cannam@127 146 return (V){x[1],x[0],x[3],x[2]};
cannam@127 147 #else
cannam@127 148 return (V){x[1],x[0]};
cannam@127 149 #endif
cannam@127 150 }
cannam@127 151
cannam@127 152 static inline V VCONJ(V x)
cannam@127 153 {
cannam@127 154 #ifdef FFTW_SINGLE
cannam@127 155 return (V){x[0],-x[1],x[2],-x[3]};
cannam@127 156 #else
cannam@127 157 return (V){x[0],-x[1]};
cannam@127 158 #endif
cannam@127 159 }
cannam@127 160
cannam@127 161 static inline V VBYI(V x)
cannam@127 162 {
cannam@127 163 x = VCONJ(x);
cannam@127 164 x = FLIP_RI(x);
cannam@127 165 return x;
cannam@127 166 }
cannam@127 167
cannam@127 168 /* FMA support */
cannam@127 169 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
cannam@127 170 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
cannam@127 171 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
cannam@127 172 #define VFMAI(b, c) VADD(c, VBYI(b))
cannam@127 173 #define VFNMSI(b, c) VSUB(c, VBYI(b))
cannam@127 174 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
cannam@127 175 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
cannam@127 176 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
cannam@127 177
cannam@127 178 static inline V VZMUL(V tx, V sr)
cannam@127 179 {
cannam@127 180 V tr = VDUPL(tx);
cannam@127 181 V ti = VDUPH(tx);
cannam@127 182 tr = VMUL(sr, tr);
cannam@127 183 sr = VBYI(sr);
cannam@127 184 return VFMA(ti, sr, tr);
cannam@127 185 }
cannam@127 186
cannam@127 187 static inline V VZMULJ(V tx, V sr)
cannam@127 188 {
cannam@127 189 V tr = VDUPL(tx);
cannam@127 190 V ti = VDUPH(tx);
cannam@127 191 tr = VMUL(sr, tr);
cannam@127 192 sr = VBYI(sr);
cannam@127 193 return VFNMS(ti, sr, tr);
cannam@127 194 }
cannam@127 195
cannam@127 196 static inline V VZMULI(V tx, V sr)
cannam@127 197 {
cannam@127 198 V tr = VDUPL(tx);
cannam@127 199 V ti = VDUPH(tx);
cannam@127 200 ti = VMUL(ti, sr);
cannam@127 201 sr = VBYI(sr);
cannam@127 202 return VFMS(tr, sr, ti);
cannam@127 203 }
cannam@127 204
cannam@127 205 static inline V VZMULIJ(V tx, V sr)
cannam@127 206 {
cannam@127 207 V tr = VDUPL(tx);
cannam@127 208 V ti = VDUPH(tx);
cannam@127 209 ti = VMUL(ti, sr);
cannam@127 210 sr = VBYI(sr);
cannam@127 211 return VFMA(tr, sr, ti);
cannam@127 212 }
cannam@127 213
cannam@127 214 /* twiddle storage #1: compact, slower */
cannam@127 215 #ifdef FFTW_SINGLE
cannam@127 216 # define VTW1(v,x) \
cannam@127 217 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@127 218 static inline V BYTW1(const R *t, V sr)
cannam@127 219 {
cannam@127 220 return VZMUL(LDA(t, 2, t), sr);
cannam@127 221 }
cannam@127 222 static inline V BYTWJ1(const R *t, V sr)
cannam@127 223 {
cannam@127 224 return VZMULJ(LDA(t, 2, t), sr);
cannam@127 225 }
cannam@127 226 #else /* !FFTW_SINGLE */
cannam@127 227 # define VTW1(v,x) {TW_CEXP, v, x}
cannam@127 228 static inline V BYTW1(const R *t, V sr)
cannam@127 229 {
cannam@127 230 V tx = LD(t, 1, t);
cannam@127 231 return VZMUL(tx, sr);
cannam@127 232 }
cannam@127 233 static inline V BYTWJ1(const R *t, V sr)
cannam@127 234 {
cannam@127 235 V tx = LD(t, 1, t);
cannam@127 236 return VZMULJ(tx, sr);
cannam@127 237 }
cannam@127 238 #endif
cannam@127 239 #define TWVL1 (VL)
cannam@127 240
cannam@127 241 /* twiddle storage #2: twice the space, faster (when in cache) */
cannam@127 242 #ifdef FFTW_SINGLE
cannam@127 243 # define VTW2(v,x) \
cannam@127 244 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
cannam@127 245 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
cannam@127 246 #else /* !FFTW_SINGLE */
cannam@127 247 # define VTW2(v,x) \
cannam@127 248 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
cannam@127 249 #endif
cannam@127 250 #define TWVL2 (2 * VL)
cannam@127 251 static inline V BYTW2(const R *t, V sr)
cannam@127 252 {
cannam@127 253 const V *twp = (const V *)t;
cannam@127 254 V si = FLIP_RI(sr);
cannam@127 255 V tr = twp[0], ti = twp[1];
cannam@127 256 return VFMA(tr, sr, VMUL(ti, si));
cannam@127 257 }
cannam@127 258 static inline V BYTWJ2(const R *t, V sr)
cannam@127 259 {
cannam@127 260 const V *twp = (const V *)t;
cannam@127 261 V si = FLIP_RI(sr);
cannam@127 262 V tr = twp[0], ti = twp[1];
cannam@127 263 return VFNMS(ti, si, VMUL(tr, sr));
cannam@127 264 }
cannam@127 265
cannam@127 266 /* twiddle storage #3 */
cannam@127 267 #ifdef FFTW_SINGLE
cannam@127 268 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
cannam@127 269 # define TWVL3 (VL)
cannam@127 270 #else
cannam@127 271 # define VTW3(v,x) VTW1(v,x)
cannam@127 272 # define TWVL3 TWVL1
cannam@127 273 #endif
cannam@127 274
cannam@127 275 /* twiddle storage for split arrays */
cannam@127 276 #ifdef FFTW_SINGLE
cannam@127 277 # define VTWS(v,x) \
cannam@127 278 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
cannam@127 279 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
cannam@127 280 #else
cannam@127 281 # define VTWS(v,x) \
cannam@127 282 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@127 283 #endif
cannam@127 284 #define TWVLS (2 * VL)
cannam@127 285
cannam@127 286 #define VLEAVE() /* nothing */
cannam@127 287
cannam@127 288 #include "simd-common.h"