cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h cannam@127: * with single & double precision by Erik Lindahl. cannam@127: * Romain Dolbeau hereby places his modifications in the public domain. cannam@127: * Erik Lindahl hereby places his modifications in the public domain. cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: cannam@127: #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) cannam@127: # error "Generic simd128 only works in single or double precision" cannam@127: #endif cannam@127: cannam@127: #define SIMD_SUFFIX _generic_simd128 /* for renaming */ cannam@127: cannam@127: #ifdef FFTW_SINGLE cannam@127: # define DS(d,s) s /* single-precision option */ cannam@127: # define VDUPL(x) (V){x[0],x[0],x[2],x[2]} cannam@127: # define VDUPH(x) (V){x[1],x[1],x[3],x[3]} cannam@127: # define DVK(var, val) V var = {val,val,val,val} cannam@127: #else cannam@127: # define DS(d,s) d /* double-precision option */ cannam@127: # define VDUPL(x) (V){x[0],x[0]} cannam@127: # define VDUPH(x) (V){x[1],x[1]} cannam@127: # define DVK(var, val) V var = {val, val} cannam@127: #endif cannam@127: cannam@127: #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ cannam@127: #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) cannam@127: #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK cannam@127: cannam@127: typedef DS(double,float) V __attribute__ ((vector_size(16))); cannam@127: cannam@127: #define VADD(a,b) ((a)+(b)) cannam@127: #define VSUB(a,b) ((a)-(b)) cannam@127: #define VMUL(a,b) ((a)*(b)) cannam@127: cannam@127: cannam@127: #define LDK(x) x cannam@127: cannam@127: static inline V LDA(const R *x, INT ivs, const R *aligned_like) cannam@127: { cannam@127: (void)aligned_like; /* UNUSED */ cannam@127: (void)ivs; /* UNUSED */ cannam@127: return *(const V *)x; cannam@127: } cannam@127: cannam@127: static inline void STA(R *x, V v, INT ovs, const R *aligned_like) cannam@127: { cannam@127: (void)aligned_like; /* UNUSED */ cannam@127: (void)ovs; /* UNUSED */ cannam@127: *(V *)x = v; cannam@127: } cannam@127: cannam@127: static inline V LD(const R *x, INT ivs, const R *aligned_like) cannam@127: { cannam@127: (void)aligned_like; /* UNUSED */ cannam@127: V res; cannam@127: res[0] = x[0]; cannam@127: res[1] = x[1]; cannam@127: #ifdef FFTW_SINGLE cannam@127: res[2] = x[ivs]; cannam@127: res[3] = x[ivs+1]; cannam@127: #endif cannam@127: return res; cannam@127: } cannam@127: cannam@127: #ifdef FFTW_SINGLE cannam@127: /* ST has to be separate due to the storage hack requiring reverse order */ cannam@127: static inline void ST(R *x, V v, INT ovs, const R *aligned_like) cannam@127: { cannam@127: (void)aligned_like; /* UNUSED */ cannam@127: (void)ovs; /* UNUSED */ cannam@127: *(x + ovs ) = v[2]; cannam@127: *(x + ovs + 1) = v[3]; cannam@127: *(x ) = v[0]; cannam@127: *(x + 1) = v[1]; cannam@127: } cannam@127: #else cannam@127: /* FFTW_DOUBLE */ cannam@127: # define ST STA cannam@127: #endif cannam@127: cannam@127: #ifdef FFTW_SINGLE cannam@127: #define STM2 ST cannam@127: #define STN2(x, v0, v1, ovs) /* nop */ cannam@127: cannam@127: static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) cannam@127: { cannam@127: *(x ) = v0[0]; cannam@127: *(x + 1) = v1[0]; cannam@127: *(x + 2) = v2[0]; cannam@127: *(x + 3) = v3[0]; cannam@127: *(x + ovs ) = v0[1]; cannam@127: *(x + ovs + 1) = v1[1]; cannam@127: *(x + ovs + 2) = v2[1]; cannam@127: *(x + ovs + 3) = v3[1]; cannam@127: *(x + 2 * ovs ) = v0[2]; cannam@127: *(x + 2 * ovs + 1) = v1[2]; cannam@127: *(x + 2 * ovs + 2) = v2[2]; cannam@127: *(x + 2 * ovs + 3) = v3[2]; cannam@127: *(x + 3 * ovs ) = v0[3]; cannam@127: *(x + 3 * ovs + 1) = v1[3]; cannam@127: *(x + 3 * ovs + 2) = v2[3]; cannam@127: *(x + 3 * ovs + 3) = v3[3]; cannam@127: } cannam@127: #define STM4(x, v, ovs, aligned_like) /* no-op */ cannam@127: cannam@127: cannam@127: #else cannam@127: /* FFTW_DOUBLE */ cannam@127: cannam@127: #define STM2 STA cannam@127: #define STN2(x, v0, v1, ovs) /* nop */ cannam@127: cannam@127: static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) cannam@127: { cannam@127: (void)aligned_like; /* UNUSED */ cannam@127: *(x) = v[0]; cannam@127: *(x+ovs) = v[1]; cannam@127: } cannam@127: # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ cannam@127: #endif cannam@127: cannam@127: cannam@127: static inline V FLIP_RI(V x) cannam@127: { cannam@127: #ifdef FFTW_SINGLE cannam@127: return (V){x[1],x[0],x[3],x[2]}; cannam@127: #else cannam@127: return (V){x[1],x[0]}; cannam@127: #endif cannam@127: } cannam@127: cannam@127: static inline V VCONJ(V x) cannam@127: { cannam@127: #ifdef FFTW_SINGLE cannam@127: return (V){x[0],-x[1],x[2],-x[3]}; cannam@127: #else cannam@127: return (V){x[0],-x[1]}; cannam@127: #endif cannam@127: } cannam@127: cannam@127: static inline V VBYI(V x) cannam@127: { cannam@127: x = VCONJ(x); cannam@127: x = FLIP_RI(x); cannam@127: return x; cannam@127: } cannam@127: cannam@127: /* FMA support */ cannam@127: #define VFMA(a, b, c) VADD(c, VMUL(a, b)) cannam@127: #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) cannam@127: #define VFMS(a, b, c) VSUB(VMUL(a, b), c) cannam@127: #define VFMAI(b, c) VADD(c, VBYI(b)) cannam@127: #define VFNMSI(b, c) VSUB(c, VBYI(b)) cannam@127: #define VFMACONJ(b,c) VADD(VCONJ(b),c) cannam@127: #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) cannam@127: #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) cannam@127: cannam@127: static inline V VZMUL(V tx, V sr) cannam@127: { cannam@127: V tr = VDUPL(tx); cannam@127: V ti = VDUPH(tx); cannam@127: tr = VMUL(sr, tr); cannam@127: sr = VBYI(sr); cannam@127: return VFMA(ti, sr, tr); cannam@127: } cannam@127: cannam@127: static inline V VZMULJ(V tx, V sr) cannam@127: { cannam@127: V tr = VDUPL(tx); cannam@127: V ti = VDUPH(tx); cannam@127: tr = VMUL(sr, tr); cannam@127: sr = VBYI(sr); cannam@127: return VFNMS(ti, sr, tr); cannam@127: } cannam@127: cannam@127: static inline V VZMULI(V tx, V sr) cannam@127: { cannam@127: V tr = VDUPL(tx); cannam@127: V ti = VDUPH(tx); cannam@127: ti = VMUL(ti, sr); cannam@127: sr = VBYI(sr); cannam@127: return VFMS(tr, sr, ti); cannam@127: } cannam@127: cannam@127: static inline V VZMULIJ(V tx, V sr) cannam@127: { cannam@127: V tr = VDUPL(tx); cannam@127: V ti = VDUPH(tx); cannam@127: ti = VMUL(ti, sr); cannam@127: sr = VBYI(sr); cannam@127: return VFMA(tr, sr, ti); cannam@127: } cannam@127: cannam@127: /* twiddle storage #1: compact, slower */ cannam@127: #ifdef FFTW_SINGLE cannam@127: # define VTW1(v,x) \ cannam@127: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} cannam@127: static inline V BYTW1(const R *t, V sr) cannam@127: { cannam@127: return VZMUL(LDA(t, 2, t), sr); cannam@127: } cannam@127: static inline V BYTWJ1(const R *t, V sr) cannam@127: { cannam@127: return VZMULJ(LDA(t, 2, t), sr); cannam@127: } cannam@127: #else /* !FFTW_SINGLE */ cannam@127: # define VTW1(v,x) {TW_CEXP, v, x} cannam@127: static inline V BYTW1(const R *t, V sr) cannam@127: { cannam@127: V tx = LD(t, 1, t); cannam@127: return VZMUL(tx, sr); cannam@127: } cannam@127: static inline V BYTWJ1(const R *t, V sr) cannam@127: { cannam@127: V tx = LD(t, 1, t); cannam@127: return VZMULJ(tx, sr); cannam@127: } cannam@127: #endif cannam@127: #define TWVL1 (VL) cannam@127: cannam@127: /* twiddle storage #2: twice the space, faster (when in cache) */ cannam@127: #ifdef FFTW_SINGLE cannam@127: # define VTW2(v,x) \ cannam@127: {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ cannam@127: {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} cannam@127: #else /* !FFTW_SINGLE */ cannam@127: # define VTW2(v,x) \ cannam@127: {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} cannam@127: #endif cannam@127: #define TWVL2 (2 * VL) cannam@127: static inline V BYTW2(const R *t, V sr) cannam@127: { cannam@127: const V *twp = (const V *)t; cannam@127: V si = FLIP_RI(sr); cannam@127: V tr = twp[0], ti = twp[1]; cannam@127: return VFMA(tr, sr, VMUL(ti, si)); cannam@127: } cannam@127: static inline V BYTWJ2(const R *t, V sr) cannam@127: { cannam@127: const V *twp = (const V *)t; cannam@127: V si = FLIP_RI(sr); cannam@127: V tr = twp[0], ti = twp[1]; cannam@127: return VFNMS(ti, si, VMUL(tr, sr)); cannam@127: } cannam@127: cannam@127: /* twiddle storage #3 */ cannam@127: #ifdef FFTW_SINGLE cannam@127: # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} cannam@127: # define TWVL3 (VL) cannam@127: #else cannam@127: # define VTW3(v,x) VTW1(v,x) cannam@127: # define TWVL3 TWVL1 cannam@127: #endif cannam@127: cannam@127: /* twiddle storage for split arrays */ cannam@127: #ifdef FFTW_SINGLE cannam@127: # define VTWS(v,x) \ cannam@127: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ cannam@127: {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} cannam@127: #else cannam@127: # define VTWS(v,x) \ cannam@127: {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} cannam@127: #endif cannam@127: #define TWVLS (2 * VL) cannam@127: cannam@127: #define VLEAVE() /* nothing */ cannam@127: cannam@127: #include "simd-common.h"