annotate src/fftw-3.3.5/reodft/reodft11e-r2hc.c @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
Chris@42 23 pre/post-processing ala FFTPACK. Use a trick from:
Chris@42 24
Chris@42 25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
Chris@42 26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
Chris@42 27
Chris@42 28 to re-express as an REDFT01 (DCT-III) problem.
Chris@42 29
Chris@42 30 NOTE: We no longer use this algorithm, because it turns out to suffer
Chris@42 31 a catastrophic loss of accuracy for certain inputs, apparently because
Chris@42 32 its post-processing multiplies the output by a cosine. Near the zero
Chris@42 33 of the cosine, the REDFT01 must produce a near-singular output.
Chris@42 34 */
Chris@42 35
Chris@42 36 #include "reodft.h"
Chris@42 37
Chris@42 38 typedef struct {
Chris@42 39 solver super;
Chris@42 40 } S;
Chris@42 41
Chris@42 42 typedef struct {
Chris@42 43 plan_rdft super;
Chris@42 44 plan *cld;
Chris@42 45 twid *td, *td2;
Chris@42 46 INT is, os;
Chris@42 47 INT n;
Chris@42 48 INT vl;
Chris@42 49 INT ivs, ovs;
Chris@42 50 rdft_kind kind;
Chris@42 51 } P;
Chris@42 52
Chris@42 53 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@42 54 {
Chris@42 55 const P *ego = (const P *) ego_;
Chris@42 56 INT is = ego->is, os = ego->os;
Chris@42 57 INT i, n = ego->n;
Chris@42 58 INT iv, vl = ego->vl;
Chris@42 59 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@42 60 R *W;
Chris@42 61 R *buf;
Chris@42 62 E cur;
Chris@42 63
Chris@42 64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@42 65
Chris@42 66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@42 67 /* I wish that this didn't require an extra pass. */
Chris@42 68 /* FIXME: use recursive/cascade summation for better stability? */
Chris@42 69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
Chris@42 70 for (i = n - 1; i > 0; --i) {
Chris@42 71 E curnew;
Chris@42 72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
Chris@42 73 cur = curnew;
Chris@42 74 }
Chris@42 75
Chris@42 76 W = ego->td->W;
Chris@42 77 for (i = 1; i < n - i; ++i) {
Chris@42 78 E a, b, apb, amb, wa, wb;
Chris@42 79 a = buf[i];
Chris@42 80 b = buf[n - i];
Chris@42 81 apb = a + b;
Chris@42 82 amb = a - b;
Chris@42 83 wa = W[2*i];
Chris@42 84 wb = W[2*i + 1];
Chris@42 85 buf[i] = wa * amb + wb * apb;
Chris@42 86 buf[n - i] = wa * apb - wb * amb;
Chris@42 87 }
Chris@42 88 if (i == n - i) {
Chris@42 89 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@42 90 }
Chris@42 91
Chris@42 92 {
Chris@42 93 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@42 94 cld->apply((plan *) cld, buf, buf);
Chris@42 95 }
Chris@42 96
Chris@42 97 W = ego->td2->W;
Chris@42 98 O[0] = W[0] * buf[0];
Chris@42 99 for (i = 1; i < n - i; ++i) {
Chris@42 100 E a, b;
Chris@42 101 INT k;
Chris@42 102 a = buf[i];
Chris@42 103 b = buf[n - i];
Chris@42 104 k = i + i;
Chris@42 105 O[os * (k - 1)] = W[k - 1] * (a - b);
Chris@42 106 O[os * k] = W[k] * (a + b);
Chris@42 107 }
Chris@42 108 if (i == n - i) {
Chris@42 109 O[os * (n - 1)] = W[n - 1] * buf[i];
Chris@42 110 }
Chris@42 111 }
Chris@42 112
Chris@42 113 X(ifree)(buf);
Chris@42 114 }
Chris@42 115
Chris@42 116 /* like for rodft01, rodft11 is obtained from redft11 by
Chris@42 117 reversing the input and flipping the sign of every other output. */
Chris@42 118 static void apply_ro11(const plan *ego_, R *I, R *O)
Chris@42 119 {
Chris@42 120 const P *ego = (const P *) ego_;
Chris@42 121 INT is = ego->is, os = ego->os;
Chris@42 122 INT i, n = ego->n;
Chris@42 123 INT iv, vl = ego->vl;
Chris@42 124 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@42 125 R *W;
Chris@42 126 R *buf;
Chris@42 127 E cur;
Chris@42 128
Chris@42 129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@42 130
Chris@42 131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@42 132 /* I wish that this didn't require an extra pass. */
Chris@42 133 /* FIXME: use recursive/cascade summation for better stability? */
Chris@42 134 buf[n - 1] = cur = K(2.0) * I[0];
Chris@42 135 for (i = n - 1; i > 0; --i) {
Chris@42 136 E curnew;
Chris@42 137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
Chris@42 138 cur = curnew;
Chris@42 139 }
Chris@42 140
Chris@42 141 W = ego->td->W;
Chris@42 142 for (i = 1; i < n - i; ++i) {
Chris@42 143 E a, b, apb, amb, wa, wb;
Chris@42 144 a = buf[i];
Chris@42 145 b = buf[n - i];
Chris@42 146 apb = a + b;
Chris@42 147 amb = a - b;
Chris@42 148 wa = W[2*i];
Chris@42 149 wb = W[2*i + 1];
Chris@42 150 buf[i] = wa * amb + wb * apb;
Chris@42 151 buf[n - i] = wa * apb - wb * amb;
Chris@42 152 }
Chris@42 153 if (i == n - i) {
Chris@42 154 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@42 155 }
Chris@42 156
Chris@42 157 {
Chris@42 158 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@42 159 cld->apply((plan *) cld, buf, buf);
Chris@42 160 }
Chris@42 161
Chris@42 162 W = ego->td2->W;
Chris@42 163 O[0] = W[0] * buf[0];
Chris@42 164 for (i = 1; i < n - i; ++i) {
Chris@42 165 E a, b;
Chris@42 166 INT k;
Chris@42 167 a = buf[i];
Chris@42 168 b = buf[n - i];
Chris@42 169 k = i + i;
Chris@42 170 O[os * (k - 1)] = W[k - 1] * (b - a);
Chris@42 171 O[os * k] = W[k] * (a + b);
Chris@42 172 }
Chris@42 173 if (i == n - i) {
Chris@42 174 O[os * (n - 1)] = -W[n - 1] * buf[i];
Chris@42 175 }
Chris@42 176 }
Chris@42 177
Chris@42 178 X(ifree)(buf);
Chris@42 179 }
Chris@42 180
Chris@42 181 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@42 182 {
Chris@42 183 P *ego = (P *) ego_;
Chris@42 184 static const tw_instr reodft010e_tw[] = {
Chris@42 185 { TW_COS, 0, 1 },
Chris@42 186 { TW_SIN, 0, 1 },
Chris@42 187 { TW_NEXT, 1, 0 }
Chris@42 188 };
Chris@42 189 static const tw_instr reodft11e_tw[] = {
Chris@42 190 { TW_COS, 1, 1 },
Chris@42 191 { TW_NEXT, 2, 0 }
Chris@42 192 };
Chris@42 193
Chris@42 194 X(plan_awake)(ego->cld, wakefulness);
Chris@42 195
Chris@42 196 X(twiddle_awake)(wakefulness,
Chris@42 197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
Chris@42 198 X(twiddle_awake)(wakefulness,
Chris@42 199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
Chris@42 200 }
Chris@42 201
Chris@42 202 static void destroy(plan *ego_)
Chris@42 203 {
Chris@42 204 P *ego = (P *) ego_;
Chris@42 205 X(plan_destroy_internal)(ego->cld);
Chris@42 206 }
Chris@42 207
Chris@42 208 static void print(const plan *ego_, printer *p)
Chris@42 209 {
Chris@42 210 const P *ego = (const P *) ego_;
Chris@42 211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
Chris@42 212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@42 213 }
Chris@42 214
Chris@42 215 static int applicable0(const solver *ego_, const problem *p_)
Chris@42 216 {
Chris@42 217 const problem_rdft *p = (const problem_rdft *) p_;
Chris@42 218
Chris@42 219 UNUSED(ego_);
Chris@42 220
Chris@42 221 return (1
Chris@42 222 && p->sz->rnk == 1
Chris@42 223 && p->vecsz->rnk <= 1
Chris@42 224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
Chris@42 225 );
Chris@42 226 }
Chris@42 227
Chris@42 228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@42 229 {
Chris@42 230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@42 231 }
Chris@42 232
Chris@42 233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@42 234 {
Chris@42 235 P *pln;
Chris@42 236 const problem_rdft *p;
Chris@42 237 plan *cld;
Chris@42 238 R *buf;
Chris@42 239 INT n;
Chris@42 240 opcnt ops;
Chris@42 241
Chris@42 242 static const plan_adt padt = {
Chris@42 243 X(rdft_solve), awake, print, destroy
Chris@42 244 };
Chris@42 245
Chris@42 246 if (!applicable(ego_, p_, plnr))
Chris@42 247 return (plan *)0;
Chris@42 248
Chris@42 249 p = (const problem_rdft *) p_;
Chris@42 250
Chris@42 251 n = p->sz->dims[0].n;
Chris@42 252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@42 253
Chris@42 254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
Chris@42 255 X(mktensor_0d)(),
Chris@42 256 buf, buf, R2HC));
Chris@42 257 X(ifree)(buf);
Chris@42 258 if (!cld)
Chris@42 259 return (plan *)0;
Chris@42 260
Chris@42 261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
Chris@42 262 pln->n = n;
Chris@42 263 pln->is = p->sz->dims[0].is;
Chris@42 264 pln->os = p->sz->dims[0].os;
Chris@42 265 pln->cld = cld;
Chris@42 266 pln->td = pln->td2 = 0;
Chris@42 267 pln->kind = p->kind[0];
Chris@42 268
Chris@42 269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@42 270
Chris@42 271 X(ops_zero)(&ops);
Chris@42 272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
Chris@42 273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
Chris@42 274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
Chris@42 275
Chris@42 276 X(ops_zero)(&pln->super.super.ops);
Chris@42 277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@42 278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@42 279
Chris@42 280 return &(pln->super.super);
Chris@42 281 }
Chris@42 282
Chris@42 283 /* constructor */
Chris@42 284 static solver *mksolver(void)
Chris@42 285 {
Chris@42 286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@42 287 S *slv = MKSOLVER(S, &sadt);
Chris@42 288 return &(slv->super);
Chris@42 289 }
Chris@42 290
Chris@42 291 void X(reodft11e_r2hc_register)(planner *p)
Chris@42 292 {
Chris@42 293 REGISTER_SOLVER(p, mksolver());
Chris@42 294 }