Chris@42: /* Chris@42: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@42: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@42: * Chris@42: * This program is free software; you can redistribute it and/or modify Chris@42: * it under the terms of the GNU General Public License as published by Chris@42: * the Free Software Foundation; either version 2 of the License, or Chris@42: * (at your option) any later version. Chris@42: * Chris@42: * This program is distributed in the hope that it will be useful, Chris@42: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@42: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@42: * GNU General Public License for more details. Chris@42: * Chris@42: * You should have received a copy of the GNU General Public License Chris@42: * along with this program; if not, write to the Free Software Chris@42: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@42: * Chris@42: */ Chris@42: Chris@42: Chris@42: /* Do an R{E,O}DFT11 problem via an R2HC problem, with some Chris@42: pre/post-processing ala FFTPACK. Use a trick from: Chris@42: Chris@42: S. C. Chan and K. L. Ho, "Direct methods for computing discrete Chris@42: sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). Chris@42: Chris@42: to re-express as an REDFT01 (DCT-III) problem. Chris@42: Chris@42: NOTE: We no longer use this algorithm, because it turns out to suffer Chris@42: a catastrophic loss of accuracy for certain inputs, apparently because Chris@42: its post-processing multiplies the output by a cosine. Near the zero Chris@42: of the cosine, the REDFT01 must produce a near-singular output. Chris@42: */ Chris@42: Chris@42: #include "reodft.h" Chris@42: Chris@42: typedef struct { Chris@42: solver super; Chris@42: } S; Chris@42: Chris@42: typedef struct { Chris@42: plan_rdft super; Chris@42: plan *cld; Chris@42: twid *td, *td2; Chris@42: INT is, os; Chris@42: INT n; Chris@42: INT vl; Chris@42: INT ivs, ovs; Chris@42: rdft_kind kind; Chris@42: } P; Chris@42: Chris@42: static void apply_re11(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is, os = ego->os; Chris@42: INT i, n = ego->n; Chris@42: INT iv, vl = ego->vl; Chris@42: INT ivs = ego->ivs, ovs = ego->ovs; Chris@42: R *W; Chris@42: R *buf; Chris@42: E cur; Chris@42: Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@42: /* I wish that this didn't require an extra pass. */ Chris@42: /* FIXME: use recursive/cascade summation for better stability? */ Chris@42: buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; Chris@42: for (i = n - 1; i > 0; --i) { Chris@42: E curnew; Chris@42: buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; Chris@42: cur = curnew; Chris@42: } Chris@42: Chris@42: W = ego->td->W; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b, apb, amb, wa, wb; Chris@42: a = buf[i]; Chris@42: b = buf[n - i]; Chris@42: apb = a + b; Chris@42: amb = a - b; Chris@42: wa = W[2*i]; Chris@42: wb = W[2*i + 1]; Chris@42: buf[i] = wa * amb + wb * apb; Chris@42: buf[n - i] = wa * apb - wb * amb; Chris@42: } Chris@42: if (i == n - i) { Chris@42: buf[i] = K(2.0) * buf[i] * W[2*i]; Chris@42: } Chris@42: Chris@42: { Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, buf, buf); Chris@42: } Chris@42: Chris@42: W = ego->td2->W; Chris@42: O[0] = W[0] * buf[0]; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b; Chris@42: INT k; Chris@42: a = buf[i]; Chris@42: b = buf[n - i]; Chris@42: k = i + i; Chris@42: O[os * (k - 1)] = W[k - 1] * (a - b); Chris@42: O[os * k] = W[k] * (a + b); Chris@42: } Chris@42: if (i == n - i) { Chris@42: O[os * (n - 1)] = W[n - 1] * buf[i]; Chris@42: } Chris@42: } Chris@42: Chris@42: X(ifree)(buf); Chris@42: } Chris@42: Chris@42: /* like for rodft01, rodft11 is obtained from redft11 by Chris@42: reversing the input and flipping the sign of every other output. */ Chris@42: static void apply_ro11(const plan *ego_, R *I, R *O) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: INT is = ego->is, os = ego->os; Chris@42: INT i, n = ego->n; Chris@42: INT iv, vl = ego->vl; Chris@42: INT ivs = ego->ivs, ovs = ego->ovs; Chris@42: R *W; Chris@42: R *buf; Chris@42: E cur; Chris@42: Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@42: /* I wish that this didn't require an extra pass. */ Chris@42: /* FIXME: use recursive/cascade summation for better stability? */ Chris@42: buf[n - 1] = cur = K(2.0) * I[0]; Chris@42: for (i = n - 1; i > 0; --i) { Chris@42: E curnew; Chris@42: buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; Chris@42: cur = curnew; Chris@42: } Chris@42: Chris@42: W = ego->td->W; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b, apb, amb, wa, wb; Chris@42: a = buf[i]; Chris@42: b = buf[n - i]; Chris@42: apb = a + b; Chris@42: amb = a - b; Chris@42: wa = W[2*i]; Chris@42: wb = W[2*i + 1]; Chris@42: buf[i] = wa * amb + wb * apb; Chris@42: buf[n - i] = wa * apb - wb * amb; Chris@42: } Chris@42: if (i == n - i) { Chris@42: buf[i] = K(2.0) * buf[i] * W[2*i]; Chris@42: } Chris@42: Chris@42: { Chris@42: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@42: cld->apply((plan *) cld, buf, buf); Chris@42: } Chris@42: Chris@42: W = ego->td2->W; Chris@42: O[0] = W[0] * buf[0]; Chris@42: for (i = 1; i < n - i; ++i) { Chris@42: E a, b; Chris@42: INT k; Chris@42: a = buf[i]; Chris@42: b = buf[n - i]; Chris@42: k = i + i; Chris@42: O[os * (k - 1)] = W[k - 1] * (b - a); Chris@42: O[os * k] = W[k] * (a + b); Chris@42: } Chris@42: if (i == n - i) { Chris@42: O[os * (n - 1)] = -W[n - 1] * buf[i]; Chris@42: } Chris@42: } Chris@42: Chris@42: X(ifree)(buf); Chris@42: } Chris@42: Chris@42: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: static const tw_instr reodft010e_tw[] = { Chris@42: { TW_COS, 0, 1 }, Chris@42: { TW_SIN, 0, 1 }, Chris@42: { TW_NEXT, 1, 0 } Chris@42: }; Chris@42: static const tw_instr reodft11e_tw[] = { Chris@42: { TW_COS, 1, 1 }, Chris@42: { TW_NEXT, 2, 0 } Chris@42: }; Chris@42: Chris@42: X(plan_awake)(ego->cld, wakefulness); Chris@42: Chris@42: X(twiddle_awake)(wakefulness, Chris@42: &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); Chris@42: X(twiddle_awake)(wakefulness, Chris@42: &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); Chris@42: } Chris@42: Chris@42: static void destroy(plan *ego_) Chris@42: { Chris@42: P *ego = (P *) ego_; Chris@42: X(plan_destroy_internal)(ego->cld); Chris@42: } Chris@42: Chris@42: static void print(const plan *ego_, printer *p) Chris@42: { Chris@42: const P *ego = (const P *) ego_; Chris@42: p->print(p, "(%se-r2hc-%D%v%(%p%))", Chris@42: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); Chris@42: } Chris@42: Chris@42: static int applicable0(const solver *ego_, const problem *p_) Chris@42: { Chris@42: const problem_rdft *p = (const problem_rdft *) p_; Chris@42: Chris@42: UNUSED(ego_); Chris@42: Chris@42: return (1 Chris@42: && p->sz->rnk == 1 Chris@42: && p->vecsz->rnk <= 1 Chris@42: && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) Chris@42: ); Chris@42: } Chris@42: Chris@42: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@42: { Chris@42: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@42: } Chris@42: Chris@42: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@42: { Chris@42: P *pln; Chris@42: const problem_rdft *p; Chris@42: plan *cld; Chris@42: R *buf; Chris@42: INT n; Chris@42: opcnt ops; Chris@42: Chris@42: static const plan_adt padt = { Chris@42: X(rdft_solve), awake, print, destroy Chris@42: }; Chris@42: Chris@42: if (!applicable(ego_, p_, plnr)) Chris@42: return (plan *)0; Chris@42: Chris@42: p = (const problem_rdft *) p_; Chris@42: Chris@42: n = p->sz->dims[0].n; Chris@42: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); Chris@42: Chris@42: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), Chris@42: X(mktensor_0d)(), Chris@42: buf, buf, R2HC)); Chris@42: X(ifree)(buf); Chris@42: if (!cld) Chris@42: return (plan *)0; Chris@42: Chris@42: pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); Chris@42: pln->n = n; Chris@42: pln->is = p->sz->dims[0].is; Chris@42: pln->os = p->sz->dims[0].os; Chris@42: pln->cld = cld; Chris@42: pln->td = pln->td2 = 0; Chris@42: pln->kind = p->kind[0]; Chris@42: Chris@42: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@42: Chris@42: X(ops_zero)(&ops); Chris@42: ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; Chris@42: ops.add = (n - 1) * 1 + (n-1)/2 * 6; Chris@42: ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; Chris@42: Chris@42: X(ops_zero)(&pln->super.super.ops); Chris@42: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@42: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@42: Chris@42: return &(pln->super.super); Chris@42: } Chris@42: Chris@42: /* constructor */ Chris@42: static solver *mksolver(void) Chris@42: { Chris@42: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@42: S *slv = MKSOLVER(S, &sadt); Chris@42: return &(slv->super); Chris@42: } Chris@42: Chris@42: void X(reodft11e_r2hc_register)(planner *p) Chris@42: { Chris@42: REGISTER_SOLVER(p, mksolver()); Chris@42: }