annotate src/fftw-3.3.5/rdft/scalar/r2cb/hc2cbdft_8.c @ 56:af97cad61ff0

Add updated build of PortAudio for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 03 Jan 2017 15:10:52 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:51:55 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-rdft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include hc2cb.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 82 FP additions, 36 FP multiplications,
Chris@42 32 * (or, 60 additions, 14 multiplications, 22 fused multiply/add),
Chris@42 33 * 55 stack variables, 1 constants, and 32 memory accesses
Chris@42 34 */
Chris@42 35 #include "hc2cb.h"
Chris@42 36
Chris@42 37 static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@42 43 E T1m, T1r, T1i, T1u, T1o, T1v, T1n, T1w, T1s;
Chris@42 44 {
Chris@42 45 E T1k, Tl, T1p, TE, TP, T1g, TM, T1b, T1f, T1a, TU, Tf, T1l, TH, Tw;
Chris@42 46 E T1q;
Chris@42 47 {
Chris@42 48 E TA, T3, TN, Tk, Th, T6, TO, TD, Tb, Tm, Ta, TK, Tp, Tc, Ts;
Chris@42 49 E Tt;
Chris@42 50 {
Chris@42 51 E T4, T5, TB, TC;
Chris@42 52 {
Chris@42 53 E T1, T2, Ti, Tj;
Chris@42 54 T1 = Rp[0];
Chris@42 55 T2 = Rm[WS(rs, 3)];
Chris@42 56 Ti = Ip[0];
Chris@42 57 Tj = Im[WS(rs, 3)];
Chris@42 58 T4 = Rp[WS(rs, 2)];
Chris@42 59 TA = T1 - T2;
Chris@42 60 T3 = T1 + T2;
Chris@42 61 TN = Ti - Tj;
Chris@42 62 Tk = Ti + Tj;
Chris@42 63 T5 = Rm[WS(rs, 1)];
Chris@42 64 TB = Ip[WS(rs, 2)];
Chris@42 65 TC = Im[WS(rs, 1)];
Chris@42 66 }
Chris@42 67 {
Chris@42 68 E T8, T9, Tn, To;
Chris@42 69 T8 = Rp[WS(rs, 1)];
Chris@42 70 Th = T4 - T5;
Chris@42 71 T6 = T4 + T5;
Chris@42 72 TO = TB - TC;
Chris@42 73 TD = TB + TC;
Chris@42 74 T9 = Rm[WS(rs, 2)];
Chris@42 75 Tn = Ip[WS(rs, 1)];
Chris@42 76 To = Im[WS(rs, 2)];
Chris@42 77 Tb = Rm[0];
Chris@42 78 Tm = T8 - T9;
Chris@42 79 Ta = T8 + T9;
Chris@42 80 TK = Tn - To;
Chris@42 81 Tp = Tn + To;
Chris@42 82 Tc = Rp[WS(rs, 3)];
Chris@42 83 Ts = Im[0];
Chris@42 84 Tt = Ip[WS(rs, 3)];
Chris@42 85 }
Chris@42 86 }
Chris@42 87 {
Chris@42 88 E Tr, Td, Tu, TL, Te, T7;
Chris@42 89 T1k = Tk - Th;
Chris@42 90 Tl = Th + Tk;
Chris@42 91 Tr = Tb - Tc;
Chris@42 92 Td = Tb + Tc;
Chris@42 93 TL = Tt - Ts;
Chris@42 94 Tu = Ts + Tt;
Chris@42 95 T1p = TA + TD;
Chris@42 96 TE = TA - TD;
Chris@42 97 TP = TN + TO;
Chris@42 98 T1g = TN - TO;
Chris@42 99 TM = TK + TL;
Chris@42 100 T1b = TL - TK;
Chris@42 101 T1f = Ta - Td;
Chris@42 102 Te = Ta + Td;
Chris@42 103 T1a = T3 - T6;
Chris@42 104 T7 = T3 + T6;
Chris@42 105 {
Chris@42 106 E Tq, TF, TG, Tv;
Chris@42 107 Tq = Tm + Tp;
Chris@42 108 TF = Tm - Tp;
Chris@42 109 TG = Tr - Tu;
Chris@42 110 Tv = Tr + Tu;
Chris@42 111 TU = T7 - Te;
Chris@42 112 Tf = T7 + Te;
Chris@42 113 T1l = TF - TG;
Chris@42 114 TH = TF + TG;
Chris@42 115 Tw = Tq - Tv;
Chris@42 116 T1q = Tq + Tv;
Chris@42 117 }
Chris@42 118 }
Chris@42 119 }
Chris@42 120 {
Chris@42 121 E TX, T10, T1c, T13, T1h, T1E, T1H, T1C, T1K, T1G, T1L, T1F;
Chris@42 122 {
Chris@42 123 E TQ, Tx, T1y, TI, Tg, Tz;
Chris@42 124 TX = TP - TM;
Chris@42 125 TQ = TM + TP;
Chris@42 126 Tx = FMA(KP707106781, Tw, Tl);
Chris@42 127 T10 = FNMS(KP707106781, Tw, Tl);
Chris@42 128 T1c = T1a + T1b;
Chris@42 129 T1y = T1a - T1b;
Chris@42 130 T13 = FNMS(KP707106781, TH, TE);
Chris@42 131 TI = FMA(KP707106781, TH, TE);
Chris@42 132 Tg = W[0];
Chris@42 133 Tz = W[1];
Chris@42 134 {
Chris@42 135 E T1B, T1A, T1x, T1J, T1z, T1D;
Chris@42 136 {
Chris@42 137 E TR, Ty, TS, TJ;
Chris@42 138 T1B = T1g - T1f;
Chris@42 139 T1h = T1f + T1g;
Chris@42 140 T1A = W[11];
Chris@42 141 TR = Tg * TI;
Chris@42 142 Ty = Tg * Tx;
Chris@42 143 T1x = W[10];
Chris@42 144 T1J = T1A * T1y;
Chris@42 145 TS = FNMS(Tz, Tx, TR);
Chris@42 146 TJ = FMA(Tz, TI, Ty);
Chris@42 147 T1z = T1x * T1y;
Chris@42 148 T1m = FMA(KP707106781, T1l, T1k);
Chris@42 149 T1E = FNMS(KP707106781, T1l, T1k);
Chris@42 150 Im[0] = TS - TQ;
Chris@42 151 Ip[0] = TQ + TS;
Chris@42 152 Rm[0] = Tf + TJ;
Chris@42 153 Rp[0] = Tf - TJ;
Chris@42 154 T1H = FMA(KP707106781, T1q, T1p);
Chris@42 155 T1r = FNMS(KP707106781, T1q, T1p);
Chris@42 156 T1D = W[12];
Chris@42 157 }
Chris@42 158 T1C = FNMS(T1A, T1B, T1z);
Chris@42 159 T1K = FMA(T1x, T1B, T1J);
Chris@42 160 T1G = W[13];
Chris@42 161 T1L = T1D * T1H;
Chris@42 162 T1F = T1D * T1E;
Chris@42 163 }
Chris@42 164 }
Chris@42 165 {
Chris@42 166 E TY, T16, T12, T17, T11;
Chris@42 167 {
Chris@42 168 E TW, TT, T15, TV, TZ, T1M, T1I;
Chris@42 169 TW = W[7];
Chris@42 170 T1M = FNMS(T1G, T1E, T1L);
Chris@42 171 T1I = FMA(T1G, T1H, T1F);
Chris@42 172 TT = W[6];
Chris@42 173 T15 = TW * TU;
Chris@42 174 Im[WS(rs, 3)] = T1M - T1K;
Chris@42 175 Ip[WS(rs, 3)] = T1K + T1M;
Chris@42 176 Rm[WS(rs, 3)] = T1C + T1I;
Chris@42 177 Rp[WS(rs, 3)] = T1C - T1I;
Chris@42 178 TV = TT * TU;
Chris@42 179 TZ = W[8];
Chris@42 180 TY = FNMS(TW, TX, TV);
Chris@42 181 T16 = FMA(TT, TX, T15);
Chris@42 182 T12 = W[9];
Chris@42 183 T17 = TZ * T13;
Chris@42 184 T11 = TZ * T10;
Chris@42 185 }
Chris@42 186 {
Chris@42 187 E T1e, T19, T1t, T1d, T1j, T18, T14;
Chris@42 188 T1e = W[3];
Chris@42 189 T18 = FNMS(T12, T10, T17);
Chris@42 190 T14 = FMA(T12, T13, T11);
Chris@42 191 T19 = W[2];
Chris@42 192 T1t = T1e * T1c;
Chris@42 193 Im[WS(rs, 2)] = T18 - T16;
Chris@42 194 Ip[WS(rs, 2)] = T16 + T18;
Chris@42 195 Rm[WS(rs, 2)] = TY + T14;
Chris@42 196 Rp[WS(rs, 2)] = TY - T14;
Chris@42 197 T1d = T19 * T1c;
Chris@42 198 T1j = W[4];
Chris@42 199 T1i = FNMS(T1e, T1h, T1d);
Chris@42 200 T1u = FMA(T19, T1h, T1t);
Chris@42 201 T1o = W[5];
Chris@42 202 T1v = T1j * T1r;
Chris@42 203 T1n = T1j * T1m;
Chris@42 204 }
Chris@42 205 }
Chris@42 206 }
Chris@42 207 }
Chris@42 208 T1w = FNMS(T1o, T1m, T1v);
Chris@42 209 T1s = FMA(T1o, T1r, T1n);
Chris@42 210 Im[WS(rs, 1)] = T1w - T1u;
Chris@42 211 Ip[WS(rs, 1)] = T1u + T1w;
Chris@42 212 Rm[WS(rs, 1)] = T1i + T1s;
Chris@42 213 Rp[WS(rs, 1)] = T1i - T1s;
Chris@42 214 }
Chris@42 215 }
Chris@42 216 }
Chris@42 217
Chris@42 218 static const tw_instr twinstr[] = {
Chris@42 219 {TW_FULL, 1, 8},
Chris@42 220 {TW_NEXT, 1, 0}
Chris@42 221 };
Chris@42 222
Chris@42 223 static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, {60, 14, 22, 0} };
Chris@42 224
Chris@42 225 void X(codelet_hc2cbdft_8) (planner *p) {
Chris@42 226 X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT);
Chris@42 227 }
Chris@42 228 #else /* HAVE_FMA */
Chris@42 229
Chris@42 230 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include hc2cb.h */
Chris@42 231
Chris@42 232 /*
Chris@42 233 * This function contains 82 FP additions, 32 FP multiplications,
Chris@42 234 * (or, 68 additions, 18 multiplications, 14 fused multiply/add),
Chris@42 235 * 30 stack variables, 1 constants, and 32 memory accesses
Chris@42 236 */
Chris@42 237 #include "hc2cb.h"
Chris@42 238
Chris@42 239 static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 240 {
Chris@42 241 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 242 {
Chris@42 243 INT m;
Chris@42 244 for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@42 245 E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
Chris@42 246 E T1i;
Chris@42 247 {
Chris@42 248 E T3, TC, Tk, TM, T6, Th, TF, TN;
Chris@42 249 {
Chris@42 250 E T1, T2, Ti, Tj;
Chris@42 251 T1 = Rp[0];
Chris@42 252 T2 = Rm[WS(rs, 3)];
Chris@42 253 T3 = T1 + T2;
Chris@42 254 TC = T1 - T2;
Chris@42 255 Ti = Ip[0];
Chris@42 256 Tj = Im[WS(rs, 3)];
Chris@42 257 Tk = Ti + Tj;
Chris@42 258 TM = Ti - Tj;
Chris@42 259 }
Chris@42 260 {
Chris@42 261 E T4, T5, TD, TE;
Chris@42 262 T4 = Rp[WS(rs, 2)];
Chris@42 263 T5 = Rm[WS(rs, 1)];
Chris@42 264 T6 = T4 + T5;
Chris@42 265 Th = T4 - T5;
Chris@42 266 TD = Ip[WS(rs, 2)];
Chris@42 267 TE = Im[WS(rs, 1)];
Chris@42 268 TF = TD + TE;
Chris@42 269 TN = TD - TE;
Chris@42 270 }
Chris@42 271 T7 = T3 + T6;
Chris@42 272 T1d = Tk - Th;
Chris@42 273 T1h = TC + TF;
Chris@42 274 Tl = Th + Tk;
Chris@42 275 TG = TC - TF;
Chris@42 276 T14 = T3 - T6;
Chris@42 277 T19 = TM - TN;
Chris@42 278 TO = TM + TN;
Chris@42 279 }
Chris@42 280 {
Chris@42 281 E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
Chris@42 282 {
Chris@42 283 E T8, T9, Tn, To;
Chris@42 284 T8 = Rp[WS(rs, 1)];
Chris@42 285 T9 = Rm[WS(rs, 2)];
Chris@42 286 Ta = T8 + T9;
Chris@42 287 Tm = T8 - T9;
Chris@42 288 Tn = Ip[WS(rs, 1)];
Chris@42 289 To = Im[WS(rs, 2)];
Chris@42 290 Tp = Tn + To;
Chris@42 291 TJ = Tn - To;
Chris@42 292 }
Chris@42 293 {
Chris@42 294 E Tb, Tc, Ts, Tt;
Chris@42 295 Tb = Rm[0];
Chris@42 296 Tc = Rp[WS(rs, 3)];
Chris@42 297 Td = Tb + Tc;
Chris@42 298 Tr = Tb - Tc;
Chris@42 299 Ts = Im[0];
Chris@42 300 Tt = Ip[WS(rs, 3)];
Chris@42 301 Tu = Ts + Tt;
Chris@42 302 TK = Tt - Ts;
Chris@42 303 }
Chris@42 304 Te = Ta + Td;
Chris@42 305 TL = TJ + TK;
Chris@42 306 T18 = Ta - Td;
Chris@42 307 T15 = TK - TJ;
Chris@42 308 {
Chris@42 309 E Tz, TA, Tq, Tv;
Chris@42 310 Tz = Tm - Tp;
Chris@42 311 TA = Tr - Tu;
Chris@42 312 TB = KP707106781 * (Tz + TA);
Chris@42 313 T1e = KP707106781 * (Tz - TA);
Chris@42 314 Tq = Tm + Tp;
Chris@42 315 Tv = Tr + Tu;
Chris@42 316 Tw = KP707106781 * (Tq - Tv);
Chris@42 317 T1i = KP707106781 * (Tq + Tv);
Chris@42 318 }
Chris@42 319 }
Chris@42 320 {
Chris@42 321 E Tf, TP, TI, TQ;
Chris@42 322 Tf = T7 + Te;
Chris@42 323 TP = TL + TO;
Chris@42 324 {
Chris@42 325 E Tx, TH, Tg, Ty;
Chris@42 326 Tx = Tl + Tw;
Chris@42 327 TH = TB + TG;
Chris@42 328 Tg = W[0];
Chris@42 329 Ty = W[1];
Chris@42 330 TI = FMA(Tg, Tx, Ty * TH);
Chris@42 331 TQ = FNMS(Ty, Tx, Tg * TH);
Chris@42 332 }
Chris@42 333 Rp[0] = Tf - TI;
Chris@42 334 Ip[0] = TP + TQ;
Chris@42 335 Rm[0] = Tf + TI;
Chris@42 336 Im[0] = TQ - TP;
Chris@42 337 }
Chris@42 338 {
Chris@42 339 E T1r, T1x, T1w, T1y;
Chris@42 340 {
Chris@42 341 E T1o, T1q, T1n, T1p;
Chris@42 342 T1o = T14 - T15;
Chris@42 343 T1q = T19 - T18;
Chris@42 344 T1n = W[10];
Chris@42 345 T1p = W[11];
Chris@42 346 T1r = FNMS(T1p, T1q, T1n * T1o);
Chris@42 347 T1x = FMA(T1p, T1o, T1n * T1q);
Chris@42 348 }
Chris@42 349 {
Chris@42 350 E T1t, T1v, T1s, T1u;
Chris@42 351 T1t = T1d - T1e;
Chris@42 352 T1v = T1i + T1h;
Chris@42 353 T1s = W[12];
Chris@42 354 T1u = W[13];
Chris@42 355 T1w = FMA(T1s, T1t, T1u * T1v);
Chris@42 356 T1y = FNMS(T1u, T1t, T1s * T1v);
Chris@42 357 }
Chris@42 358 Rp[WS(rs, 3)] = T1r - T1w;
Chris@42 359 Ip[WS(rs, 3)] = T1x + T1y;
Chris@42 360 Rm[WS(rs, 3)] = T1r + T1w;
Chris@42 361 Im[WS(rs, 3)] = T1y - T1x;
Chris@42 362 }
Chris@42 363 {
Chris@42 364 E TV, T11, T10, T12;
Chris@42 365 {
Chris@42 366 E TS, TU, TR, TT;
Chris@42 367 TS = T7 - Te;
Chris@42 368 TU = TO - TL;
Chris@42 369 TR = W[6];
Chris@42 370 TT = W[7];
Chris@42 371 TV = FNMS(TT, TU, TR * TS);
Chris@42 372 T11 = FMA(TT, TS, TR * TU);
Chris@42 373 }
Chris@42 374 {
Chris@42 375 E TX, TZ, TW, TY;
Chris@42 376 TX = Tl - Tw;
Chris@42 377 TZ = TG - TB;
Chris@42 378 TW = W[8];
Chris@42 379 TY = W[9];
Chris@42 380 T10 = FMA(TW, TX, TY * TZ);
Chris@42 381 T12 = FNMS(TY, TX, TW * TZ);
Chris@42 382 }
Chris@42 383 Rp[WS(rs, 2)] = TV - T10;
Chris@42 384 Ip[WS(rs, 2)] = T11 + T12;
Chris@42 385 Rm[WS(rs, 2)] = TV + T10;
Chris@42 386 Im[WS(rs, 2)] = T12 - T11;
Chris@42 387 }
Chris@42 388 {
Chris@42 389 E T1b, T1l, T1k, T1m;
Chris@42 390 {
Chris@42 391 E T16, T1a, T13, T17;
Chris@42 392 T16 = T14 + T15;
Chris@42 393 T1a = T18 + T19;
Chris@42 394 T13 = W[2];
Chris@42 395 T17 = W[3];
Chris@42 396 T1b = FNMS(T17, T1a, T13 * T16);
Chris@42 397 T1l = FMA(T17, T16, T13 * T1a);
Chris@42 398 }
Chris@42 399 {
Chris@42 400 E T1f, T1j, T1c, T1g;
Chris@42 401 T1f = T1d + T1e;
Chris@42 402 T1j = T1h - T1i;
Chris@42 403 T1c = W[4];
Chris@42 404 T1g = W[5];
Chris@42 405 T1k = FMA(T1c, T1f, T1g * T1j);
Chris@42 406 T1m = FNMS(T1g, T1f, T1c * T1j);
Chris@42 407 }
Chris@42 408 Rp[WS(rs, 1)] = T1b - T1k;
Chris@42 409 Ip[WS(rs, 1)] = T1l + T1m;
Chris@42 410 Rm[WS(rs, 1)] = T1b + T1k;
Chris@42 411 Im[WS(rs, 1)] = T1m - T1l;
Chris@42 412 }
Chris@42 413 }
Chris@42 414 }
Chris@42 415 }
Chris@42 416
Chris@42 417 static const tw_instr twinstr[] = {
Chris@42 418 {TW_FULL, 1, 8},
Chris@42 419 {TW_NEXT, 1, 0}
Chris@42 420 };
Chris@42 421
Chris@42 422 static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, {68, 18, 14, 0} };
Chris@42 423
Chris@42 424 void X(codelet_hc2cbdft_8) (planner *p) {
Chris@42 425 X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT);
Chris@42 426 }
Chris@42 427 #endif /* HAVE_FMA */