annotate src/fftw-3.3.8/reodft/reodft11e-r2hc.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21
Chris@82 22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
Chris@82 23 pre/post-processing ala FFTPACK. Use a trick from:
Chris@82 24
Chris@82 25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
Chris@82 26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
Chris@82 27
Chris@82 28 to re-express as an REDFT01 (DCT-III) problem.
Chris@82 29
Chris@82 30 NOTE: We no longer use this algorithm, because it turns out to suffer
Chris@82 31 a catastrophic loss of accuracy for certain inputs, apparently because
Chris@82 32 its post-processing multiplies the output by a cosine. Near the zero
Chris@82 33 of the cosine, the REDFT01 must produce a near-singular output.
Chris@82 34 */
Chris@82 35
Chris@82 36 #include "reodft/reodft.h"
Chris@82 37
Chris@82 38 typedef struct {
Chris@82 39 solver super;
Chris@82 40 } S;
Chris@82 41
Chris@82 42 typedef struct {
Chris@82 43 plan_rdft super;
Chris@82 44 plan *cld;
Chris@82 45 twid *td, *td2;
Chris@82 46 INT is, os;
Chris@82 47 INT n;
Chris@82 48 INT vl;
Chris@82 49 INT ivs, ovs;
Chris@82 50 rdft_kind kind;
Chris@82 51 } P;
Chris@82 52
Chris@82 53 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@82 54 {
Chris@82 55 const P *ego = (const P *) ego_;
Chris@82 56 INT is = ego->is, os = ego->os;
Chris@82 57 INT i, n = ego->n;
Chris@82 58 INT iv, vl = ego->vl;
Chris@82 59 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@82 60 R *W;
Chris@82 61 R *buf;
Chris@82 62 E cur;
Chris@82 63
Chris@82 64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@82 65
Chris@82 66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@82 67 /* I wish that this didn't require an extra pass. */
Chris@82 68 /* FIXME: use recursive/cascade summation for better stability? */
Chris@82 69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
Chris@82 70 for (i = n - 1; i > 0; --i) {
Chris@82 71 E curnew;
Chris@82 72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
Chris@82 73 cur = curnew;
Chris@82 74 }
Chris@82 75
Chris@82 76 W = ego->td->W;
Chris@82 77 for (i = 1; i < n - i; ++i) {
Chris@82 78 E a, b, apb, amb, wa, wb;
Chris@82 79 a = buf[i];
Chris@82 80 b = buf[n - i];
Chris@82 81 apb = a + b;
Chris@82 82 amb = a - b;
Chris@82 83 wa = W[2*i];
Chris@82 84 wb = W[2*i + 1];
Chris@82 85 buf[i] = wa * amb + wb * apb;
Chris@82 86 buf[n - i] = wa * apb - wb * amb;
Chris@82 87 }
Chris@82 88 if (i == n - i) {
Chris@82 89 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@82 90 }
Chris@82 91
Chris@82 92 {
Chris@82 93 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@82 94 cld->apply((plan *) cld, buf, buf);
Chris@82 95 }
Chris@82 96
Chris@82 97 W = ego->td2->W;
Chris@82 98 O[0] = W[0] * buf[0];
Chris@82 99 for (i = 1; i < n - i; ++i) {
Chris@82 100 E a, b;
Chris@82 101 INT k;
Chris@82 102 a = buf[i];
Chris@82 103 b = buf[n - i];
Chris@82 104 k = i + i;
Chris@82 105 O[os * (k - 1)] = W[k - 1] * (a - b);
Chris@82 106 O[os * k] = W[k] * (a + b);
Chris@82 107 }
Chris@82 108 if (i == n - i) {
Chris@82 109 O[os * (n - 1)] = W[n - 1] * buf[i];
Chris@82 110 }
Chris@82 111 }
Chris@82 112
Chris@82 113 X(ifree)(buf);
Chris@82 114 }
Chris@82 115
Chris@82 116 /* like for rodft01, rodft11 is obtained from redft11 by
Chris@82 117 reversing the input and flipping the sign of every other output. */
Chris@82 118 static void apply_ro11(const plan *ego_, R *I, R *O)
Chris@82 119 {
Chris@82 120 const P *ego = (const P *) ego_;
Chris@82 121 INT is = ego->is, os = ego->os;
Chris@82 122 INT i, n = ego->n;
Chris@82 123 INT iv, vl = ego->vl;
Chris@82 124 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@82 125 R *W;
Chris@82 126 R *buf;
Chris@82 127 E cur;
Chris@82 128
Chris@82 129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@82 130
Chris@82 131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@82 132 /* I wish that this didn't require an extra pass. */
Chris@82 133 /* FIXME: use recursive/cascade summation for better stability? */
Chris@82 134 buf[n - 1] = cur = K(2.0) * I[0];
Chris@82 135 for (i = n - 1; i > 0; --i) {
Chris@82 136 E curnew;
Chris@82 137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
Chris@82 138 cur = curnew;
Chris@82 139 }
Chris@82 140
Chris@82 141 W = ego->td->W;
Chris@82 142 for (i = 1; i < n - i; ++i) {
Chris@82 143 E a, b, apb, amb, wa, wb;
Chris@82 144 a = buf[i];
Chris@82 145 b = buf[n - i];
Chris@82 146 apb = a + b;
Chris@82 147 amb = a - b;
Chris@82 148 wa = W[2*i];
Chris@82 149 wb = W[2*i + 1];
Chris@82 150 buf[i] = wa * amb + wb * apb;
Chris@82 151 buf[n - i] = wa * apb - wb * amb;
Chris@82 152 }
Chris@82 153 if (i == n - i) {
Chris@82 154 buf[i] = K(2.0) * buf[i] * W[2*i];
Chris@82 155 }
Chris@82 156
Chris@82 157 {
Chris@82 158 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@82 159 cld->apply((plan *) cld, buf, buf);
Chris@82 160 }
Chris@82 161
Chris@82 162 W = ego->td2->W;
Chris@82 163 O[0] = W[0] * buf[0];
Chris@82 164 for (i = 1; i < n - i; ++i) {
Chris@82 165 E a, b;
Chris@82 166 INT k;
Chris@82 167 a = buf[i];
Chris@82 168 b = buf[n - i];
Chris@82 169 k = i + i;
Chris@82 170 O[os * (k - 1)] = W[k - 1] * (b - a);
Chris@82 171 O[os * k] = W[k] * (a + b);
Chris@82 172 }
Chris@82 173 if (i == n - i) {
Chris@82 174 O[os * (n - 1)] = -W[n - 1] * buf[i];
Chris@82 175 }
Chris@82 176 }
Chris@82 177
Chris@82 178 X(ifree)(buf);
Chris@82 179 }
Chris@82 180
Chris@82 181 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@82 182 {
Chris@82 183 P *ego = (P *) ego_;
Chris@82 184 static const tw_instr reodft010e_tw[] = {
Chris@82 185 { TW_COS, 0, 1 },
Chris@82 186 { TW_SIN, 0, 1 },
Chris@82 187 { TW_NEXT, 1, 0 }
Chris@82 188 };
Chris@82 189 static const tw_instr reodft11e_tw[] = {
Chris@82 190 { TW_COS, 1, 1 },
Chris@82 191 { TW_NEXT, 2, 0 }
Chris@82 192 };
Chris@82 193
Chris@82 194 X(plan_awake)(ego->cld, wakefulness);
Chris@82 195
Chris@82 196 X(twiddle_awake)(wakefulness,
Chris@82 197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
Chris@82 198 X(twiddle_awake)(wakefulness,
Chris@82 199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
Chris@82 200 }
Chris@82 201
Chris@82 202 static void destroy(plan *ego_)
Chris@82 203 {
Chris@82 204 P *ego = (P *) ego_;
Chris@82 205 X(plan_destroy_internal)(ego->cld);
Chris@82 206 }
Chris@82 207
Chris@82 208 static void print(const plan *ego_, printer *p)
Chris@82 209 {
Chris@82 210 const P *ego = (const P *) ego_;
Chris@82 211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
Chris@82 212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@82 213 }
Chris@82 214
Chris@82 215 static int applicable0(const solver *ego_, const problem *p_)
Chris@82 216 {
Chris@82 217 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 218
Chris@82 219 UNUSED(ego_);
Chris@82 220
Chris@82 221 return (1
Chris@82 222 && p->sz->rnk == 1
Chris@82 223 && p->vecsz->rnk <= 1
Chris@82 224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
Chris@82 225 );
Chris@82 226 }
Chris@82 227
Chris@82 228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@82 229 {
Chris@82 230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@82 231 }
Chris@82 232
Chris@82 233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 234 {
Chris@82 235 P *pln;
Chris@82 236 const problem_rdft *p;
Chris@82 237 plan *cld;
Chris@82 238 R *buf;
Chris@82 239 INT n;
Chris@82 240 opcnt ops;
Chris@82 241
Chris@82 242 static const plan_adt padt = {
Chris@82 243 X(rdft_solve), awake, print, destroy
Chris@82 244 };
Chris@82 245
Chris@82 246 if (!applicable(ego_, p_, plnr))
Chris@82 247 return (plan *)0;
Chris@82 248
Chris@82 249 p = (const problem_rdft *) p_;
Chris@82 250
Chris@82 251 n = p->sz->dims[0].n;
Chris@82 252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@82 253
Chris@82 254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
Chris@82 255 X(mktensor_0d)(),
Chris@82 256 buf, buf, R2HC));
Chris@82 257 X(ifree)(buf);
Chris@82 258 if (!cld)
Chris@82 259 return (plan *)0;
Chris@82 260
Chris@82 261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
Chris@82 262 pln->n = n;
Chris@82 263 pln->is = p->sz->dims[0].is;
Chris@82 264 pln->os = p->sz->dims[0].os;
Chris@82 265 pln->cld = cld;
Chris@82 266 pln->td = pln->td2 = 0;
Chris@82 267 pln->kind = p->kind[0];
Chris@82 268
Chris@82 269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@82 270
Chris@82 271 X(ops_zero)(&ops);
Chris@82 272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
Chris@82 273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
Chris@82 274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
Chris@82 275
Chris@82 276 X(ops_zero)(&pln->super.super.ops);
Chris@82 277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@82 278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@82 279
Chris@82 280 return &(pln->super.super);
Chris@82 281 }
Chris@82 282
Chris@82 283 /* constructor */
Chris@82 284 static solver *mksolver(void)
Chris@82 285 {
Chris@82 286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 287 S *slv = MKSOLVER(S, &sadt);
Chris@82 288 return &(slv->super);
Chris@82 289 }
Chris@82 290
Chris@82 291 void X(reodft11e_r2hc_register)(planner *p)
Chris@82 292 {
Chris@82 293 REGISTER_SOLVER(p, mksolver());
Chris@82 294 }