annotate src/fftw-3.3.8/rdft/direct-r2r.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21
Chris@82 22 /* direct RDFT solver, using r2r codelets */
Chris@82 23
Chris@82 24 #include "rdft/rdft.h"
Chris@82 25
Chris@82 26 typedef struct {
Chris@82 27 solver super;
Chris@82 28 const kr2r_desc *desc;
Chris@82 29 kr2r k;
Chris@82 30 } S;
Chris@82 31
Chris@82 32 typedef struct {
Chris@82 33 plan_rdft super;
Chris@82 34
Chris@82 35 INT vl, ivs, ovs;
Chris@82 36 stride is, os;
Chris@82 37 kr2r k;
Chris@82 38 const S *slv;
Chris@82 39 } P;
Chris@82 40
Chris@82 41 static void apply(const plan *ego_, R *I, R *O)
Chris@82 42 {
Chris@82 43 const P *ego = (const P *) ego_;
Chris@82 44 ASSERT_ALIGNED_DOUBLE;
Chris@82 45 ego->k(I, O, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
Chris@82 46 }
Chris@82 47
Chris@82 48 static void destroy(plan *ego_)
Chris@82 49 {
Chris@82 50 P *ego = (P *) ego_;
Chris@82 51 X(stride_destroy)(ego->is);
Chris@82 52 X(stride_destroy)(ego->os);
Chris@82 53 }
Chris@82 54
Chris@82 55 static void print(const plan *ego_, printer *p)
Chris@82 56 {
Chris@82 57 const P *ego = (const P *) ego_;
Chris@82 58 const S *s = ego->slv;
Chris@82 59
Chris@82 60 p->print(p, "(rdft-%s-direct-r2r-%D%v \"%s\")",
Chris@82 61 X(rdft_kind_str)(s->desc->kind), s->desc->n,
Chris@82 62 ego->vl, s->desc->nam);
Chris@82 63 }
Chris@82 64
Chris@82 65 static int applicable(const solver *ego_, const problem *p_)
Chris@82 66 {
Chris@82 67 const S *ego = (const S *) ego_;
Chris@82 68 const problem_rdft *p = (const problem_rdft *) p_;
Chris@82 69 INT vl;
Chris@82 70 INT ivs, ovs;
Chris@82 71
Chris@82 72 return (
Chris@82 73 1
Chris@82 74 && p->sz->rnk == 1
Chris@82 75 && p->vecsz->rnk <= 1
Chris@82 76 && p->sz->dims[0].n == ego->desc->n
Chris@82 77 && p->kind[0] == ego->desc->kind
Chris@82 78
Chris@82 79 /* check strides etc */
Chris@82 80 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@82 81
Chris@82 82 && (0
Chris@82 83 /* can operate out-of-place */
Chris@82 84 || p->I != p->O
Chris@82 85
Chris@82 86 /* computing one transform */
Chris@82 87 || vl == 1
Chris@82 88
Chris@82 89 /* can operate in-place as long as strides are the same */
Chris@82 90 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@82 91 )
Chris@82 92 );
Chris@82 93 }
Chris@82 94
Chris@82 95 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@82 96 {
Chris@82 97 const S *ego = (const S *) ego_;
Chris@82 98 P *pln;
Chris@82 99 const problem_rdft *p;
Chris@82 100 iodim *d;
Chris@82 101
Chris@82 102 static const plan_adt padt = {
Chris@82 103 X(rdft_solve), X(null_awake), print, destroy
Chris@82 104 };
Chris@82 105
Chris@82 106 UNUSED(plnr);
Chris@82 107
Chris@82 108 if (!applicable(ego_, p_))
Chris@82 109 return (plan *)0;
Chris@82 110
Chris@82 111 p = (const problem_rdft *) p_;
Chris@82 112
Chris@82 113
Chris@82 114 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@82 115
Chris@82 116 d = p->sz->dims;
Chris@82 117
Chris@82 118 pln->k = ego->k;
Chris@82 119
Chris@82 120 pln->is = X(mkstride)(d->n, d->is);
Chris@82 121 pln->os = X(mkstride)(d->n, d->os);
Chris@82 122
Chris@82 123 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@82 124
Chris@82 125 pln->slv = ego;
Chris@82 126 X(ops_zero)(&pln->super.super.ops);
Chris@82 127 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
Chris@82 128 &ego->desc->ops,
Chris@82 129 &pln->super.super.ops);
Chris@82 130
Chris@82 131 pln->super.super.could_prune_now_p = 1;
Chris@82 132
Chris@82 133 return &(pln->super.super);
Chris@82 134 }
Chris@82 135
Chris@82 136 /* constructor */
Chris@82 137 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc)
Chris@82 138 {
Chris@82 139 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@82 140 S *slv = MKSOLVER(S, &sadt);
Chris@82 141 slv->k = k;
Chris@82 142 slv->desc = desc;
Chris@82 143 return &(slv->super);
Chris@82 144 }
Chris@82 145