annotate src/fftw-3.3.5/doc/html/Multi_002dDimensional-DFTs-of-Real-Data.html @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
Chris@42 2 <html>
Chris@42 3 <!-- This manual is for FFTW
Chris@42 4 (version 3.3.5, 30 July 2016).
Chris@42 5
Chris@42 6 Copyright (C) 2003 Matteo Frigo.
Chris@42 7
Chris@42 8 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@42 9
Chris@42 10 Permission is granted to make and distribute verbatim copies of this
Chris@42 11 manual provided the copyright notice and this permission notice are
Chris@42 12 preserved on all copies.
Chris@42 13
Chris@42 14 Permission is granted to copy and distribute modified versions of this
Chris@42 15 manual under the conditions for verbatim copying, provided that the
Chris@42 16 entire resulting derived work is distributed under the terms of a
Chris@42 17 permission notice identical to this one.
Chris@42 18
Chris@42 19 Permission is granted to copy and distribute translations of this manual
Chris@42 20 into another language, under the above conditions for modified versions,
Chris@42 21 except that this permission notice may be stated in a translation
Chris@42 22 approved by the Free Software Foundation. -->
Chris@42 23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
Chris@42 24 <head>
Chris@42 25 <title>FFTW 3.3.5: Multi-Dimensional DFTs of Real Data</title>
Chris@42 26
Chris@42 27 <meta name="description" content="FFTW 3.3.5: Multi-Dimensional DFTs of Real Data">
Chris@42 28 <meta name="keywords" content="FFTW 3.3.5: Multi-Dimensional DFTs of Real Data">
Chris@42 29 <meta name="resource-type" content="document">
Chris@42 30 <meta name="distribution" content="global">
Chris@42 31 <meta name="Generator" content="makeinfo">
Chris@42 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Chris@42 33 <link href="index.html#Top" rel="start" title="Top">
Chris@42 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
Chris@42 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
Chris@42 36 <link href="Tutorial.html#Tutorial" rel="up" title="Tutorial">
Chris@42 37 <link href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" rel="next" title="More DFTs of Real Data">
Chris@42 38 <link href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" rel="prev" title="One-Dimensional DFTs of Real Data">
Chris@42 39 <style type="text/css">
Chris@42 40 <!--
Chris@42 41 a.summary-letter {text-decoration: none}
Chris@42 42 blockquote.smallquotation {font-size: smaller}
Chris@42 43 div.display {margin-left: 3.2em}
Chris@42 44 div.example {margin-left: 3.2em}
Chris@42 45 div.indentedblock {margin-left: 3.2em}
Chris@42 46 div.lisp {margin-left: 3.2em}
Chris@42 47 div.smalldisplay {margin-left: 3.2em}
Chris@42 48 div.smallexample {margin-left: 3.2em}
Chris@42 49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
Chris@42 50 div.smalllisp {margin-left: 3.2em}
Chris@42 51 kbd {font-style:oblique}
Chris@42 52 pre.display {font-family: inherit}
Chris@42 53 pre.format {font-family: inherit}
Chris@42 54 pre.menu-comment {font-family: serif}
Chris@42 55 pre.menu-preformatted {font-family: serif}
Chris@42 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
Chris@42 57 pre.smallexample {font-size: smaller}
Chris@42 58 pre.smallformat {font-family: inherit; font-size: smaller}
Chris@42 59 pre.smalllisp {font-size: smaller}
Chris@42 60 span.nocodebreak {white-space:nowrap}
Chris@42 61 span.nolinebreak {white-space:nowrap}
Chris@42 62 span.roman {font-family:serif; font-weight:normal}
Chris@42 63 span.sansserif {font-family:sans-serif; font-weight:normal}
Chris@42 64 ul.no-bullet {list-style: none}
Chris@42 65 -->
Chris@42 66 </style>
Chris@42 67
Chris@42 68
Chris@42 69 </head>
Chris@42 70
Chris@42 71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
Chris@42 72 <a name="Multi_002dDimensional-DFTs-of-Real-Data"></a>
Chris@42 73 <div class="header">
Chris@42 74 <p>
Chris@42 75 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@42 76 </div>
Chris@42 77 <hr>
Chris@42 78 <a name="Multi_002dDimensional-DFTs-of-Real-Data-1"></a>
Chris@42 79 <h3 class="section">2.4 Multi-Dimensional DFTs of Real Data</h3>
Chris@42 80
Chris@42 81 <p>Multi-dimensional DFTs of real data use the following planner routines:
Chris@42 82 </p>
Chris@42 83 <div class="example">
Chris@42 84 <pre class="example">fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
Chris@42 85 double *in, fftw_complex *out,
Chris@42 86 unsigned flags);
Chris@42 87 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
Chris@42 88 double *in, fftw_complex *out,
Chris@42 89 unsigned flags);
Chris@42 90 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
Chris@42 91 double *in, fftw_complex *out,
Chris@42 92 unsigned flags);
Chris@42 93 </pre></div>
Chris@42 94 <a name="index-fftw_005fplan_005fdft_005fr2c_005f2d"></a>
Chris@42 95 <a name="index-fftw_005fplan_005fdft_005fr2c_005f3d"></a>
Chris@42 96 <a name="index-fftw_005fplan_005fdft_005fr2c"></a>
Chris@42 97
Chris@42 98 <p>as well as the corresponding <code>c2r</code> routines with the input/output
Chris@42 99 types swapped. These routines work similarly to their complex
Chris@42 100 analogues, except for the fact that here the complex output array is cut
Chris@42 101 roughly in half and the real array requires padding for in-place
Chris@42 102 transforms (as in 1d, above).
Chris@42 103 </p>
Chris@42 104 <p>As before, <code>n</code> is the logical size of the array, and the
Chris@42 105 consequences of this on the the format of the complex arrays deserve
Chris@42 106 careful attention.
Chris@42 107 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format"></a>
Chris@42 108 Suppose that the real data has dimensions n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> (in row-major order).
Chris@42 109 Then, after an r2c transform, the output is an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1) array of
Chris@42 110 <code>fftw_complex</code> values in row-major order, corresponding to slightly
Chris@42 111 over half of the output of the corresponding complex DFT. (The division
Chris@42 112 is rounded down.) The ordering of the data is otherwise exactly the
Chris@42 113 same as in the complex-DFT case.
Chris@42 114 </p>
Chris@42 115 <p>For out-of-place transforms, this is the end of the story: the real
Chris@42 116 data is stored as a row-major array of size n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> and the complex
Chris@42 117 data is stored as a row-major array of size n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1).
Chris@42 118 </p>
Chris@42 119 <p>For in-place transforms, however, extra padding of the real-data array
Chris@42 120 is necessary because the complex array is larger than the real array,
Chris@42 121 and the two arrays share the same memory locations. Thus, for
Chris@42 122 in-place transforms, the final dimension of the real-data array must
Chris@42 123 be padded with extra values to accommodate the size of the complex
Chris@42 124 data&mdash;two values if the last dimension is even and one if it is odd.
Chris@42 125 <a name="index-padding-1"></a>
Chris@42 126 That is, the last dimension of the real data must physically contain
Chris@42 127 2 * (n<sub>d-1</sub>/2+1)<code>double</code> values (exactly enough to hold the complex data).
Chris@42 128 This physical array size does not, however, change the <em>logical</em>
Chris@42 129 array size&mdash;only
Chris@42 130 n<sub>d-1</sub>values are actually stored in the last dimension, and
Chris@42 131 n<sub>d-1</sub>is the last dimension passed to the plan-creation routine.
Chris@42 132 </p>
Chris@42 133 <p>For example, consider the transform of a two-dimensional real array of
Chris@42 134 size <code>n0</code> by <code>n1</code>. The output of the r2c transform is a
Chris@42 135 two-dimensional complex array of size <code>n0</code> by <code>n1/2+1</code>, where
Chris@42 136 the <code>y</code> dimension has been cut nearly in half because of
Chris@42 137 redundancies in the output. Because <code>fftw_complex</code> is twice the
Chris@42 138 size of <code>double</code>, the output array is slightly bigger than the
Chris@42 139 input array. Thus, if we want to compute the transform in place, we
Chris@42 140 must <em>pad</em> the input array so that it is of size <code>n0</code> by
Chris@42 141 <code>2*(n1/2+1)</code>. If <code>n1</code> is even, then there are two padding
Chris@42 142 elements at the end of each row (which need not be initialized, as they
Chris@42 143 are only used for output).
Chris@42 144 </p>
Chris@42 145 <p>The following illustration depicts the input and output arrays just
Chris@42 146 described, for both the out-of-place and in-place transforms (with the
Chris@42 147 arrows indicating consecutive memory locations):
Chris@42 148 <img src="rfftwnd-for-html.png" alt="rfftwnd-for-html">
Chris@42 149 </p>
Chris@42 150 <p>These transforms are unnormalized, so an r2c followed by a c2r
Chris@42 151 transform (or vice versa) will result in the original data scaled by
Chris@42 152 the number of real data elements&mdash;that is, the product of the
Chris@42 153 (logical) dimensions of the real data.
Chris@42 154 <a name="index-normalization-1"></a>
Chris@42 155 </p>
Chris@42 156
Chris@42 157 <p>(Because the last dimension is treated specially, if it is equal to
Chris@42 158 <code>1</code> the transform is <em>not</em> equivalent to a lower-dimensional
Chris@42 159 r2c/c2r transform. In that case, the last complex dimension also has
Chris@42 160 size <code>1</code> (<code>=1/2+1</code>), and no advantage is gained over the
Chris@42 161 complex transforms.)
Chris@42 162 </p>
Chris@42 163 <hr>
Chris@42 164 <div class="header">
Chris@42 165 <p>
Chris@42 166 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@42 167 </div>
Chris@42 168
Chris@42 169
Chris@42 170
Chris@42 171 </body>
Chris@42 172 </html>