Chris@42
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
Chris@42
|
2 <html>
|
Chris@42
|
3 <!-- This manual is for FFTW
|
Chris@42
|
4 (version 3.3.5, 30 July 2016).
|
Chris@42
|
5
|
Chris@42
|
6 Copyright (C) 2003 Matteo Frigo.
|
Chris@42
|
7
|
Chris@42
|
8 Copyright (C) 2003 Massachusetts Institute of Technology.
|
Chris@42
|
9
|
Chris@42
|
10 Permission is granted to make and distribute verbatim copies of this
|
Chris@42
|
11 manual provided the copyright notice and this permission notice are
|
Chris@42
|
12 preserved on all copies.
|
Chris@42
|
13
|
Chris@42
|
14 Permission is granted to copy and distribute modified versions of this
|
Chris@42
|
15 manual under the conditions for verbatim copying, provided that the
|
Chris@42
|
16 entire resulting derived work is distributed under the terms of a
|
Chris@42
|
17 permission notice identical to this one.
|
Chris@42
|
18
|
Chris@42
|
19 Permission is granted to copy and distribute translations of this manual
|
Chris@42
|
20 into another language, under the above conditions for modified versions,
|
Chris@42
|
21 except that this permission notice may be stated in a translation
|
Chris@42
|
22 approved by the Free Software Foundation. -->
|
Chris@42
|
23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
|
Chris@42
|
24 <head>
|
Chris@42
|
25 <title>FFTW 3.3.5: Multi-Dimensional DFTs of Real Data</title>
|
Chris@42
|
26
|
Chris@42
|
27 <meta name="description" content="FFTW 3.3.5: Multi-Dimensional DFTs of Real Data">
|
Chris@42
|
28 <meta name="keywords" content="FFTW 3.3.5: Multi-Dimensional DFTs of Real Data">
|
Chris@42
|
29 <meta name="resource-type" content="document">
|
Chris@42
|
30 <meta name="distribution" content="global">
|
Chris@42
|
31 <meta name="Generator" content="makeinfo">
|
Chris@42
|
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
Chris@42
|
33 <link href="index.html#Top" rel="start" title="Top">
|
Chris@42
|
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
Chris@42
|
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
|
Chris@42
|
36 <link href="Tutorial.html#Tutorial" rel="up" title="Tutorial">
|
Chris@42
|
37 <link href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" rel="next" title="More DFTs of Real Data">
|
Chris@42
|
38 <link href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" rel="prev" title="One-Dimensional DFTs of Real Data">
|
Chris@42
|
39 <style type="text/css">
|
Chris@42
|
40 <!--
|
Chris@42
|
41 a.summary-letter {text-decoration: none}
|
Chris@42
|
42 blockquote.smallquotation {font-size: smaller}
|
Chris@42
|
43 div.display {margin-left: 3.2em}
|
Chris@42
|
44 div.example {margin-left: 3.2em}
|
Chris@42
|
45 div.indentedblock {margin-left: 3.2em}
|
Chris@42
|
46 div.lisp {margin-left: 3.2em}
|
Chris@42
|
47 div.smalldisplay {margin-left: 3.2em}
|
Chris@42
|
48 div.smallexample {margin-left: 3.2em}
|
Chris@42
|
49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
|
Chris@42
|
50 div.smalllisp {margin-left: 3.2em}
|
Chris@42
|
51 kbd {font-style:oblique}
|
Chris@42
|
52 pre.display {font-family: inherit}
|
Chris@42
|
53 pre.format {font-family: inherit}
|
Chris@42
|
54 pre.menu-comment {font-family: serif}
|
Chris@42
|
55 pre.menu-preformatted {font-family: serif}
|
Chris@42
|
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
|
Chris@42
|
57 pre.smallexample {font-size: smaller}
|
Chris@42
|
58 pre.smallformat {font-family: inherit; font-size: smaller}
|
Chris@42
|
59 pre.smalllisp {font-size: smaller}
|
Chris@42
|
60 span.nocodebreak {white-space:nowrap}
|
Chris@42
|
61 span.nolinebreak {white-space:nowrap}
|
Chris@42
|
62 span.roman {font-family:serif; font-weight:normal}
|
Chris@42
|
63 span.sansserif {font-family:sans-serif; font-weight:normal}
|
Chris@42
|
64 ul.no-bullet {list-style: none}
|
Chris@42
|
65 -->
|
Chris@42
|
66 </style>
|
Chris@42
|
67
|
Chris@42
|
68
|
Chris@42
|
69 </head>
|
Chris@42
|
70
|
Chris@42
|
71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
|
Chris@42
|
72 <a name="Multi_002dDimensional-DFTs-of-Real-Data"></a>
|
Chris@42
|
73 <div class="header">
|
Chris@42
|
74 <p>
|
Chris@42
|
75 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
Chris@42
|
76 </div>
|
Chris@42
|
77 <hr>
|
Chris@42
|
78 <a name="Multi_002dDimensional-DFTs-of-Real-Data-1"></a>
|
Chris@42
|
79 <h3 class="section">2.4 Multi-Dimensional DFTs of Real Data</h3>
|
Chris@42
|
80
|
Chris@42
|
81 <p>Multi-dimensional DFTs of real data use the following planner routines:
|
Chris@42
|
82 </p>
|
Chris@42
|
83 <div class="example">
|
Chris@42
|
84 <pre class="example">fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
|
Chris@42
|
85 double *in, fftw_complex *out,
|
Chris@42
|
86 unsigned flags);
|
Chris@42
|
87 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
|
Chris@42
|
88 double *in, fftw_complex *out,
|
Chris@42
|
89 unsigned flags);
|
Chris@42
|
90 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
|
Chris@42
|
91 double *in, fftw_complex *out,
|
Chris@42
|
92 unsigned flags);
|
Chris@42
|
93 </pre></div>
|
Chris@42
|
94 <a name="index-fftw_005fplan_005fdft_005fr2c_005f2d"></a>
|
Chris@42
|
95 <a name="index-fftw_005fplan_005fdft_005fr2c_005f3d"></a>
|
Chris@42
|
96 <a name="index-fftw_005fplan_005fdft_005fr2c"></a>
|
Chris@42
|
97
|
Chris@42
|
98 <p>as well as the corresponding <code>c2r</code> routines with the input/output
|
Chris@42
|
99 types swapped. These routines work similarly to their complex
|
Chris@42
|
100 analogues, except for the fact that here the complex output array is cut
|
Chris@42
|
101 roughly in half and the real array requires padding for in-place
|
Chris@42
|
102 transforms (as in 1d, above).
|
Chris@42
|
103 </p>
|
Chris@42
|
104 <p>As before, <code>n</code> is the logical size of the array, and the
|
Chris@42
|
105 consequences of this on the the format of the complex arrays deserve
|
Chris@42
|
106 careful attention.
|
Chris@42
|
107 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format"></a>
|
Chris@42
|
108 Suppose that the real data has dimensions n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> (in row-major order).
|
Chris@42
|
109 Then, after an r2c transform, the output is an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) array of
|
Chris@42
|
110 <code>fftw_complex</code> values in row-major order, corresponding to slightly
|
Chris@42
|
111 over half of the output of the corresponding complex DFT. (The division
|
Chris@42
|
112 is rounded down.) The ordering of the data is otherwise exactly the
|
Chris@42
|
113 same as in the complex-DFT case.
|
Chris@42
|
114 </p>
|
Chris@42
|
115 <p>For out-of-place transforms, this is the end of the story: the real
|
Chris@42
|
116 data is stored as a row-major array of size n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> and the complex
|
Chris@42
|
117 data is stored as a row-major array of size n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1).
|
Chris@42
|
118 </p>
|
Chris@42
|
119 <p>For in-place transforms, however, extra padding of the real-data array
|
Chris@42
|
120 is necessary because the complex array is larger than the real array,
|
Chris@42
|
121 and the two arrays share the same memory locations. Thus, for
|
Chris@42
|
122 in-place transforms, the final dimension of the real-data array must
|
Chris@42
|
123 be padded with extra values to accommodate the size of the complex
|
Chris@42
|
124 data—two values if the last dimension is even and one if it is odd.
|
Chris@42
|
125 <a name="index-padding-1"></a>
|
Chris@42
|
126 That is, the last dimension of the real data must physically contain
|
Chris@42
|
127 2 * (n<sub>d-1</sub>/2+1)<code>double</code> values (exactly enough to hold the complex data).
|
Chris@42
|
128 This physical array size does not, however, change the <em>logical</em>
|
Chris@42
|
129 array size—only
|
Chris@42
|
130 n<sub>d-1</sub>values are actually stored in the last dimension, and
|
Chris@42
|
131 n<sub>d-1</sub>is the last dimension passed to the plan-creation routine.
|
Chris@42
|
132 </p>
|
Chris@42
|
133 <p>For example, consider the transform of a two-dimensional real array of
|
Chris@42
|
134 size <code>n0</code> by <code>n1</code>. The output of the r2c transform is a
|
Chris@42
|
135 two-dimensional complex array of size <code>n0</code> by <code>n1/2+1</code>, where
|
Chris@42
|
136 the <code>y</code> dimension has been cut nearly in half because of
|
Chris@42
|
137 redundancies in the output. Because <code>fftw_complex</code> is twice the
|
Chris@42
|
138 size of <code>double</code>, the output array is slightly bigger than the
|
Chris@42
|
139 input array. Thus, if we want to compute the transform in place, we
|
Chris@42
|
140 must <em>pad</em> the input array so that it is of size <code>n0</code> by
|
Chris@42
|
141 <code>2*(n1/2+1)</code>. If <code>n1</code> is even, then there are two padding
|
Chris@42
|
142 elements at the end of each row (which need not be initialized, as they
|
Chris@42
|
143 are only used for output).
|
Chris@42
|
144 </p>
|
Chris@42
|
145 <p>The following illustration depicts the input and output arrays just
|
Chris@42
|
146 described, for both the out-of-place and in-place transforms (with the
|
Chris@42
|
147 arrows indicating consecutive memory locations):
|
Chris@42
|
148 <img src="rfftwnd-for-html.png" alt="rfftwnd-for-html">
|
Chris@42
|
149 </p>
|
Chris@42
|
150 <p>These transforms are unnormalized, so an r2c followed by a c2r
|
Chris@42
|
151 transform (or vice versa) will result in the original data scaled by
|
Chris@42
|
152 the number of real data elements—that is, the product of the
|
Chris@42
|
153 (logical) dimensions of the real data.
|
Chris@42
|
154 <a name="index-normalization-1"></a>
|
Chris@42
|
155 </p>
|
Chris@42
|
156
|
Chris@42
|
157 <p>(Because the last dimension is treated specially, if it is equal to
|
Chris@42
|
158 <code>1</code> the transform is <em>not</em> equivalent to a lower-dimensional
|
Chris@42
|
159 r2c/c2r transform. In that case, the last complex dimension also has
|
Chris@42
|
160 size <code>1</code> (<code>=1/2+1</code>), and no advantage is gained over the
|
Chris@42
|
161 complex transforms.)
|
Chris@42
|
162 </p>
|
Chris@42
|
163 <hr>
|
Chris@42
|
164 <div class="header">
|
Chris@42
|
165 <p>
|
Chris@42
|
166 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
Chris@42
|
167 </div>
|
Chris@42
|
168
|
Chris@42
|
169
|
Chris@42
|
170
|
Chris@42
|
171 </body>
|
Chris@42
|
172 </html>
|