annotate src/fftw-3.3.5/doc/html/Multi_002dDimensional-DFTs-of-Real-Data.html @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
Chris@42 2 <html>
Chris@42 3 <!-- This manual is for FFTW
Chris@42 4 (version 3.3.5, 30 July 2016).
Chris@42 5
Chris@42 6 Copyright (C) 2003 Matteo Frigo.
Chris@42 7
Chris@42 8 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@42 9
Chris@42 10 Permission is granted to make and distribute verbatim copies of this
Chris@42 11 manual provided the copyright notice and this permission notice are
Chris@42 12 preserved on all copies.
Chris@42 13
Chris@42 14 Permission is granted to copy and distribute modified versions of this
Chris@42 15 manual under the conditions for verbatim copying, provided that the
Chris@42 16 entire resulting derived work is distributed under the terms of a
Chris@42 17 permission notice identical to this one.
Chris@42 18
Chris@42 19 Permission is granted to copy and distribute translations of this manual
Chris@42 20 into another language, under the above conditions for modified versions,
Chris@42 21 except that this permission notice may be stated in a translation
Chris@42 22 approved by the Free Software Foundation. -->
Chris@42 23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
Chris@42 24 <head>
Chris@42 25 <title>FFTW 3.3.5: Multi-Dimensional DFTs of Real Data</title>
Chris@42 26
Chris@42 27 <meta name="description" content="FFTW 3.3.5: Multi-Dimensional DFTs of Real Data">
Chris@42 28 <meta name="keywords" content="FFTW 3.3.5: Multi-Dimensional DFTs of Real Data">
Chris@42 29 <meta name="resource-type" content="document">
Chris@42 30 <meta name="distribution" content="global">
Chris@42 31 <meta name="Generator" content="makeinfo">
Chris@42 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Chris@42 33 <link href="index.html#Top" rel="start" title="Top">
Chris@42 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
Chris@42 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
Chris@42 36 <link href="Tutorial.html#Tutorial" rel="up" title="Tutorial">
Chris@42 37 <link href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" rel="next" title="More DFTs of Real Data">
Chris@42 38 <link href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" rel="prev" title="One-Dimensional DFTs of Real Data">
Chris@42 39 <style type="text/css">
Chris@42 40 <!--
Chris@42 41 a.summary-letter {text-decoration: none}
Chris@42 42 blockquote.smallquotation {font-size: smaller}
Chris@42 43 div.display {margin-left: 3.2em}
Chris@42 44 div.example {margin-left: 3.2em}
Chris@42 45 div.indentedblock {margin-left: 3.2em}
Chris@42 46 div.lisp {margin-left: 3.2em}
Chris@42 47 div.smalldisplay {margin-left: 3.2em}
Chris@42 48 div.smallexample {margin-left: 3.2em}
Chris@42 49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
Chris@42 50 div.smalllisp {margin-left: 3.2em}
Chris@42 51 kbd {font-style:oblique}
Chris@42 52 pre.display {font-family: inherit}
Chris@42 53 pre.format {font-family: inherit}
Chris@42 54 pre.menu-comment {font-family: serif}
Chris@42 55 pre.menu-preformatted {font-family: serif}
Chris@42 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
Chris@42 57 pre.smallexample {font-size: smaller}
Chris@42 58 pre.smallformat {font-family: inherit; font-size: smaller}
Chris@42 59 pre.smalllisp {font-size: smaller}
Chris@42 60 span.nocodebreak {white-space:nowrap}
Chris@42 61 span.nolinebreak {white-space:nowrap}
Chris@42 62 span.roman {font-family:serif; font-weight:normal}
Chris@42 63 span.sansserif {font-family:sans-serif; font-weight:normal}
Chris@42 64 ul.no-bullet {list-style: none}
Chris@42 65 -->
Chris@42 66 </style>
Chris@42 67
Chris@42 68
Chris@42 69 </head>
Chris@42 70
Chris@42 71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
Chris@42 72 <a name="Multi_002dDimensional-DFTs-of-Real-Data"></a>
Chris@42 73 <div class="header">
Chris@42 74 <p>
Chris@42 75 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@42 76 </div>
Chris@42 77 <hr>
Chris@42 78 <a name="Multi_002dDimensional-DFTs-of-Real-Data-1"></a>
Chris@42 79 <h3 class="section">2.4 Multi-Dimensional DFTs of Real Data</h3>
Chris@42 80
Chris@42 81 <p>Multi-dimensional DFTs of real data use the following planner routines:
Chris@42 82 </p>
Chris@42 83 <div class="example">
Chris@42 84 <pre class="example">fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
Chris@42 85 double *in, fftw_complex *out,
Chris@42 86 unsigned flags);
Chris@42 87 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
Chris@42 88 double *in, fftw_complex *out,
Chris@42 89 unsigned flags);
Chris@42 90 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
Chris@42 91 double *in, fftw_complex *out,
Chris@42 92 unsigned flags);
Chris@42 93 </pre></div>
Chris@42 94 <a name="index-fftw_005fplan_005fdft_005fr2c_005f2d"></a>
Chris@42 95 <a name="index-fftw_005fplan_005fdft_005fr2c_005f3d"></a>
Chris@42 96 <a name="index-fftw_005fplan_005fdft_005fr2c"></a>
Chris@42 97
Chris@42 98 <p>as well as the corresponding <code>c2r</code> routines with the input/output
Chris@42 99 types swapped. These routines work similarly to their complex
Chris@42 100 analogues, except for the fact that here the complex output array is cut
Chris@42 101 roughly in half and the real array requires padding for in-place
Chris@42 102 transforms (as in 1d, above).
Chris@42 103 </p>
Chris@42 104 <p>As before, <code>n</code> is the logical size of the array, and the
Chris@42 105 consequences of this on the the format of the complex arrays deserve
Chris@42 106 careful attention.
Chris@42 107 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format"></a>
Chris@42 108 Suppose that the real data has dimensions n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> (in row-major order).
Chris@42 109 Then, after an r2c transform, the output is an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1) array of
Chris@42 110 <code>fftw_complex</code> values in row-major order, corresponding to slightly
Chris@42 111 over half of the output of the corresponding complex DFT. (The division
Chris@42 112 is rounded down.) The ordering of the data is otherwise exactly the
Chris@42 113 same as in the complex-DFT case.
Chris@42 114 </p>
Chris@42 115 <p>For out-of-place transforms, this is the end of the story: the real
Chris@42 116 data is stored as a row-major array of size n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> and the complex
Chris@42 117 data is stored as a row-major array of size n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1).
Chris@42 118 </p>
Chris@42 119 <p>For in-place transforms, however, extra padding of the real-data array
Chris@42 120 is necessary because the complex array is larger than the real array,
Chris@42 121 and the two arrays share the same memory locations. Thus, for
Chris@42 122 in-place transforms, the final dimension of the real-data array must
Chris@42 123 be padded with extra values to accommodate the size of the complex
Chris@42 124 data&mdash;two values if the last dimension is even and one if it is odd.
Chris@42 125 <a name="index-padding-1"></a>
Chris@42 126 That is, the last dimension of the real data must physically contain
Chris@42 127 2 * (n<sub>d-1</sub>/2+1)<code>double</code> values (exactly enough to hold the complex data).
Chris@42 128 This physical array size does not, however, change the <em>logical</em>
Chris@42 129 array size&mdash;only
Chris@42 130 n<sub>d-1</sub>values are actually stored in the last dimension, and
Chris@42 131 n<sub>d-1</sub>is the last dimension passed to the plan-creation routine.
Chris@42 132 </p>
Chris@42 133 <p>For example, consider the transform of a two-dimensional real array of
Chris@42 134 size <code>n0</code> by <code>n1</code>. The output of the r2c transform is a
Chris@42 135 two-dimensional complex array of size <code>n0</code> by <code>n1/2+1</code>, where
Chris@42 136 the <code>y</code> dimension has been cut nearly in half because of
Chris@42 137 redundancies in the output. Because <code>fftw_complex</code> is twice the
Chris@42 138 size of <code>double</code>, the output array is slightly bigger than the
Chris@42 139 input array. Thus, if we want to compute the transform in place, we
Chris@42 140 must <em>pad</em> the input array so that it is of size <code>n0</code> by
Chris@42 141 <code>2*(n1/2+1)</code>. If <code>n1</code> is even, then there are two padding
Chris@42 142 elements at the end of each row (which need not be initialized, as they
Chris@42 143 are only used for output).
Chris@42 144 </p>
Chris@42 145 <p>The following illustration depicts the input and output arrays just
Chris@42 146 described, for both the out-of-place and in-place transforms (with the
Chris@42 147 arrows indicating consecutive memory locations):
Chris@42 148 <img src="rfftwnd-for-html.png" alt="rfftwnd-for-html">
Chris@42 149 </p>
Chris@42 150 <p>These transforms are unnormalized, so an r2c followed by a c2r
Chris@42 151 transform (or vice versa) will result in the original data scaled by
Chris@42 152 the number of real data elements&mdash;that is, the product of the
Chris@42 153 (logical) dimensions of the real data.
Chris@42 154 <a name="index-normalization-1"></a>
Chris@42 155 </p>
Chris@42 156
Chris@42 157 <p>(Because the last dimension is treated specially, if it is equal to
Chris@42 158 <code>1</code> the transform is <em>not</em> equivalent to a lower-dimensional
Chris@42 159 r2c/c2r transform. In that case, the last complex dimension also has
Chris@42 160 size <code>1</code> (<code>=1/2+1</code>), and no advantage is gained over the
Chris@42 161 complex transforms.)
Chris@42 162 </p>
Chris@42 163 <hr>
Chris@42 164 <div class="header">
Chris@42 165 <p>
Chris@42 166 Next: <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" accesskey="n" rel="next">More DFTs of Real Data</a>, Previous: <a href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" accesskey="p" rel="prev">One-Dimensional DFTs of Real Data</a>, Up: <a href="Tutorial.html#Tutorial" accesskey="u" rel="up">Tutorial</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@42 167 </div>
Chris@42 168
Chris@42 169
Chris@42 170
Chris@42 171 </body>
Chris@42 172 </html>