annotate src/fftw-3.3.5/dft/simd/common/t3fv_8.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:43:52 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@42 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@42 33 * 43 stack variables, 1 constants, and 16 memory accesses
Chris@42 34 */
Chris@42 35 #include "t3f.h"
Chris@42 36
Chris@42 37 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 R *x;
Chris@42 43 x = ri;
Chris@42 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
Chris@42 46 T2 = LDW(&(W[0]));
Chris@42 47 T3 = LDW(&(W[TWVL * 2]));
Chris@42 48 Tb = LDW(&(W[TWVL * 4]));
Chris@42 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 55 T4 = VZMUL(T2, T3);
Chris@42 56 Ta = VZMULJ(T2, T3);
Chris@42 57 Tp = VZMULJ(T2, Tb);
Chris@42 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 60 T9 = VZMULJ(T2, T8);
Chris@42 61 {
Chris@42 62 V T6, To, Tc, Tr, Th, Tj;
Chris@42 63 T6 = VZMULJ(T4, T5);
Chris@42 64 To = VZMULJ(Ta, Tn);
Chris@42 65 Tc = VZMULJ(Ta, Tb);
Chris@42 66 Tr = VZMULJ(Tp, Tq);
Chris@42 67 Th = VZMULJ(Tb, Tg);
Chris@42 68 Tj = VZMULJ(T3, Ti);
Chris@42 69 {
Chris@42 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
Chris@42 71 Tx = VADD(T1, T6);
Chris@42 72 T7 = VSUB(T1, T6);
Chris@42 73 Te = VZMULJ(Tc, Td);
Chris@42 74 Ts = VSUB(To, Tr);
Chris@42 75 Ty = VADD(To, Tr);
Chris@42 76 Tk = VSUB(Th, Tj);
Chris@42 77 TB = VADD(Th, Tj);
Chris@42 78 {
Chris@42 79 V Tf, TA, Tz, TD;
Chris@42 80 Tf = VSUB(T9, Te);
Chris@42 81 TA = VADD(T9, Te);
Chris@42 82 Tz = VADD(Tx, Ty);
Chris@42 83 TD = VSUB(Tx, Ty);
Chris@42 84 {
Chris@42 85 V TC, TE, Tl, Tt;
Chris@42 86 TC = VADD(TA, TB);
Chris@42 87 TE = VSUB(TB, TA);
Chris@42 88 Tl = VADD(Tf, Tk);
Chris@42 89 Tt = VSUB(Tk, Tf);
Chris@42 90 {
Chris@42 91 V Tu, Tw, Tm, Tv;
Chris@42 92 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
Chris@42 93 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
Chris@42 94 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
Chris@42 95 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@42 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@42 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@42 98 Tm = VFMA(LDK(KP707106781), Tl, T7);
Chris@42 99 Tv = VFNMS(LDK(KP707106781), Tl, T7);
Chris@42 100 ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 101 ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 102 ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 103 ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 104 }
Chris@42 105 }
Chris@42 106 }
Chris@42 107 }
Chris@42 108 }
Chris@42 109 }
Chris@42 110 }
Chris@42 111 VLEAVE();
Chris@42 112 }
Chris@42 113
Chris@42 114 static const tw_instr twinstr[] = {
Chris@42 115 VTW(0, 1),
Chris@42 116 VTW(0, 3),
Chris@42 117 VTW(0, 7),
Chris@42 118 {TW_NEXT, VL, 0}
Chris@42 119 };
Chris@42 120
Chris@42 121 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@42 122
Chris@42 123 void XSIMD(codelet_t3fv_8) (planner *p) {
Chris@42 124 X(kdft_dit_register) (p, t3fv_8, &desc);
Chris@42 125 }
Chris@42 126 #else /* HAVE_FMA */
Chris@42 127
Chris@42 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
Chris@42 129
Chris@42 130 /*
Chris@42 131 * This function contains 37 FP additions, 24 FP multiplications,
Chris@42 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@42 133 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@42 134 */
Chris@42 135 #include "t3f.h"
Chris@42 136
Chris@42 137 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 138 {
Chris@42 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 140 {
Chris@42 141 INT m;
Chris@42 142 R *x;
Chris@42 143 x = ri;
Chris@42 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 145 V T2, T3, Ta, T4, Tb, Tc, Tq;
Chris@42 146 T2 = LDW(&(W[0]));
Chris@42 147 T3 = LDW(&(W[TWVL * 2]));
Chris@42 148 Ta = VZMULJ(T2, T3);
Chris@42 149 T4 = VZMUL(T2, T3);
Chris@42 150 Tb = LDW(&(W[TWVL * 4]));
Chris@42 151 Tc = VZMULJ(Ta, Tb);
Chris@42 152 Tq = VZMULJ(T2, Tb);
Chris@42 153 {
Chris@42 154 V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
Chris@42 155 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 156 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 157 T6 = VZMULJ(T4, T5);
Chris@42 158 T7 = VSUB(T1, T6);
Chris@42 159 Tx = VADD(T1, T6);
Chris@42 160 {
Chris@42 161 V Tp, Ts, To, Tr;
Chris@42 162 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 163 Tp = VZMULJ(Ta, To);
Chris@42 164 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 165 Ts = VZMULJ(Tq, Tr);
Chris@42 166 Tt = VSUB(Tp, Ts);
Chris@42 167 Ty = VADD(Tp, Ts);
Chris@42 168 }
Chris@42 169 {
Chris@42 170 V T9, Te, T8, Td;
Chris@42 171 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 172 T9 = VZMULJ(T2, T8);
Chris@42 173 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 174 Te = VZMULJ(Tc, Td);
Chris@42 175 Tf = VSUB(T9, Te);
Chris@42 176 TA = VADD(T9, Te);
Chris@42 177 }
Chris@42 178 {
Chris@42 179 V Th, Tj, Tg, Ti;
Chris@42 180 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 181 Th = VZMULJ(Tb, Tg);
Chris@42 182 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 183 Tj = VZMULJ(T3, Ti);
Chris@42 184 Tk = VSUB(Th, Tj);
Chris@42 185 TB = VADD(Th, Tj);
Chris@42 186 }
Chris@42 187 {
Chris@42 188 V Tz, TC, TD, TE;
Chris@42 189 Tz = VADD(Tx, Ty);
Chris@42 190 TC = VADD(TA, TB);
Chris@42 191 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@42 192 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
Chris@42 193 TD = VSUB(Tx, Ty);
Chris@42 194 TE = VBYI(VSUB(TB, TA));
Chris@42 195 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
Chris@42 196 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
Chris@42 197 {
Chris@42 198 V Tm, Tv, Tu, Tw, Tl, Tn;
Chris@42 199 Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
Chris@42 200 Tm = VADD(T7, Tl);
Chris@42 201 Tv = VSUB(T7, Tl);
Chris@42 202 Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
Chris@42 203 Tu = VBYI(VSUB(Tn, Tt));
Chris@42 204 Tw = VBYI(VADD(Tt, Tn));
Chris@42 205 ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
Chris@42 206 ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@42 207 ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
Chris@42 208 ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@42 209 }
Chris@42 210 }
Chris@42 211 }
Chris@42 212 }
Chris@42 213 }
Chris@42 214 VLEAVE();
Chris@42 215 }
Chris@42 216
Chris@42 217 static const tw_instr twinstr[] = {
Chris@42 218 VTW(0, 1),
Chris@42 219 VTW(0, 3),
Chris@42 220 VTW(0, 7),
Chris@42 221 {TW_NEXT, VL, 0}
Chris@42 222 };
Chris@42 223
Chris@42 224 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@42 225
Chris@42 226 void XSIMD(codelet_t3fv_8) (planner *p) {
Chris@42 227 X(kdft_dit_register) (p, t3fv_8, &desc);
Chris@42 228 }
Chris@42 229 #endif /* HAVE_FMA */