annotate src/fftw-3.3.5/dft/simd/common/t3fv_8.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:43:52 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 37 FP additions, 32 FP multiplications,
Chris@42 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
Chris@42 33 * 43 stack variables, 1 constants, and 16 memory accesses
Chris@42 34 */
Chris@42 35 #include "t3f.h"
Chris@42 36
Chris@42 37 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 R *x;
Chris@42 43 x = ri;
Chris@42 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
Chris@42 46 T2 = LDW(&(W[0]));
Chris@42 47 T3 = LDW(&(W[TWVL * 2]));
Chris@42 48 Tb = LDW(&(W[TWVL * 4]));
Chris@42 49 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 55 T4 = VZMUL(T2, T3);
Chris@42 56 Ta = VZMULJ(T2, T3);
Chris@42 57 Tp = VZMULJ(T2, Tb);
Chris@42 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 60 T9 = VZMULJ(T2, T8);
Chris@42 61 {
Chris@42 62 V T6, To, Tc, Tr, Th, Tj;
Chris@42 63 T6 = VZMULJ(T4, T5);
Chris@42 64 To = VZMULJ(Ta, Tn);
Chris@42 65 Tc = VZMULJ(Ta, Tb);
Chris@42 66 Tr = VZMULJ(Tp, Tq);
Chris@42 67 Th = VZMULJ(Tb, Tg);
Chris@42 68 Tj = VZMULJ(T3, Ti);
Chris@42 69 {
Chris@42 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
Chris@42 71 Tx = VADD(T1, T6);
Chris@42 72 T7 = VSUB(T1, T6);
Chris@42 73 Te = VZMULJ(Tc, Td);
Chris@42 74 Ts = VSUB(To, Tr);
Chris@42 75 Ty = VADD(To, Tr);
Chris@42 76 Tk = VSUB(Th, Tj);
Chris@42 77 TB = VADD(Th, Tj);
Chris@42 78 {
Chris@42 79 V Tf, TA, Tz, TD;
Chris@42 80 Tf = VSUB(T9, Te);
Chris@42 81 TA = VADD(T9, Te);
Chris@42 82 Tz = VADD(Tx, Ty);
Chris@42 83 TD = VSUB(Tx, Ty);
Chris@42 84 {
Chris@42 85 V TC, TE, Tl, Tt;
Chris@42 86 TC = VADD(TA, TB);
Chris@42 87 TE = VSUB(TB, TA);
Chris@42 88 Tl = VADD(Tf, Tk);
Chris@42 89 Tt = VSUB(Tk, Tf);
Chris@42 90 {
Chris@42 91 V Tu, Tw, Tm, Tv;
Chris@42 92 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
Chris@42 93 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
Chris@42 94 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
Chris@42 95 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@42 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
Chris@42 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
Chris@42 98 Tm = VFMA(LDK(KP707106781), Tl, T7);
Chris@42 99 Tv = VFNMS(LDK(KP707106781), Tl, T7);
Chris@42 100 ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 101 ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
Chris@42 102 ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 103 ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
Chris@42 104 }
Chris@42 105 }
Chris@42 106 }
Chris@42 107 }
Chris@42 108 }
Chris@42 109 }
Chris@42 110 }
Chris@42 111 VLEAVE();
Chris@42 112 }
Chris@42 113
Chris@42 114 static const tw_instr twinstr[] = {
Chris@42 115 VTW(0, 1),
Chris@42 116 VTW(0, 3),
Chris@42 117 VTW(0, 7),
Chris@42 118 {TW_NEXT, VL, 0}
Chris@42 119 };
Chris@42 120
Chris@42 121 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
Chris@42 122
Chris@42 123 void XSIMD(codelet_t3fv_8) (planner *p) {
Chris@42 124 X(kdft_dit_register) (p, t3fv_8, &desc);
Chris@42 125 }
Chris@42 126 #else /* HAVE_FMA */
Chris@42 127
Chris@42 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
Chris@42 129
Chris@42 130 /*
Chris@42 131 * This function contains 37 FP additions, 24 FP multiplications,
Chris@42 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
Chris@42 133 * 31 stack variables, 1 constants, and 16 memory accesses
Chris@42 134 */
Chris@42 135 #include "t3f.h"
Chris@42 136
Chris@42 137 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 138 {
Chris@42 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 140 {
Chris@42 141 INT m;
Chris@42 142 R *x;
Chris@42 143 x = ri;
Chris@42 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
Chris@42 145 V T2, T3, Ta, T4, Tb, Tc, Tq;
Chris@42 146 T2 = LDW(&(W[0]));
Chris@42 147 T3 = LDW(&(W[TWVL * 2]));
Chris@42 148 Ta = VZMULJ(T2, T3);
Chris@42 149 T4 = VZMUL(T2, T3);
Chris@42 150 Tb = LDW(&(W[TWVL * 4]));
Chris@42 151 Tc = VZMULJ(Ta, Tb);
Chris@42 152 Tq = VZMULJ(T2, Tb);
Chris@42 153 {
Chris@42 154 V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
Chris@42 155 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 156 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 157 T6 = VZMULJ(T4, T5);
Chris@42 158 T7 = VSUB(T1, T6);
Chris@42 159 Tx = VADD(T1, T6);
Chris@42 160 {
Chris@42 161 V Tp, Ts, To, Tr;
Chris@42 162 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 163 Tp = VZMULJ(Ta, To);
Chris@42 164 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 165 Ts = VZMULJ(Tq, Tr);
Chris@42 166 Tt = VSUB(Tp, Ts);
Chris@42 167 Ty = VADD(Tp, Ts);
Chris@42 168 }
Chris@42 169 {
Chris@42 170 V T9, Te, T8, Td;
Chris@42 171 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 172 T9 = VZMULJ(T2, T8);
Chris@42 173 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 174 Te = VZMULJ(Tc, Td);
Chris@42 175 Tf = VSUB(T9, Te);
Chris@42 176 TA = VADD(T9, Te);
Chris@42 177 }
Chris@42 178 {
Chris@42 179 V Th, Tj, Tg, Ti;
Chris@42 180 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 181 Th = VZMULJ(Tb, Tg);
Chris@42 182 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 183 Tj = VZMULJ(T3, Ti);
Chris@42 184 Tk = VSUB(Th, Tj);
Chris@42 185 TB = VADD(Th, Tj);
Chris@42 186 }
Chris@42 187 {
Chris@42 188 V Tz, TC, TD, TE;
Chris@42 189 Tz = VADD(Tx, Ty);
Chris@42 190 TC = VADD(TA, TB);
Chris@42 191 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
Chris@42 192 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
Chris@42 193 TD = VSUB(Tx, Ty);
Chris@42 194 TE = VBYI(VSUB(TB, TA));
Chris@42 195 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
Chris@42 196 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
Chris@42 197 {
Chris@42 198 V Tm, Tv, Tu, Tw, Tl, Tn;
Chris@42 199 Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
Chris@42 200 Tm = VADD(T7, Tl);
Chris@42 201 Tv = VSUB(T7, Tl);
Chris@42 202 Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
Chris@42 203 Tu = VBYI(VSUB(Tn, Tt));
Chris@42 204 Tw = VBYI(VADD(Tt, Tn));
Chris@42 205 ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
Chris@42 206 ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@42 207 ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
Chris@42 208 ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
Chris@42 209 }
Chris@42 210 }
Chris@42 211 }
Chris@42 212 }
Chris@42 213 }
Chris@42 214 VLEAVE();
Chris@42 215 }
Chris@42 216
Chris@42 217 static const tw_instr twinstr[] = {
Chris@42 218 VTW(0, 1),
Chris@42 219 VTW(0, 3),
Chris@42 220 VTW(0, 7),
Chris@42 221 {TW_NEXT, VL, 0}
Chris@42 222 };
Chris@42 223
Chris@42 224 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
Chris@42 225
Chris@42 226 void XSIMD(codelet_t3fv_8) (planner *p) {
Chris@42 227 X(kdft_dit_register) (p, t3fv_8, &desc);
Chris@42 228 }
Chris@42 229 #endif /* HAVE_FMA */