annotate src/fftw-3.3.3/rdft/hc2hc.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #include "hc2hc.h"
Chris@10 22
Chris@10 23 hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0;
Chris@10 24
Chris@10 25 typedef struct {
Chris@10 26 plan_rdft super;
Chris@10 27 plan *cld;
Chris@10 28 plan *cldw;
Chris@10 29 INT r;
Chris@10 30 } P;
Chris@10 31
Chris@10 32 static void apply_dit(const plan *ego_, R *I, R *O)
Chris@10 33 {
Chris@10 34 const P *ego = (const P *) ego_;
Chris@10 35 plan_rdft *cld;
Chris@10 36 plan_hc2hc *cldw;
Chris@10 37
Chris@10 38 cld = (plan_rdft *) ego->cld;
Chris@10 39 cld->apply(ego->cld, I, O);
Chris@10 40
Chris@10 41 cldw = (plan_hc2hc *) ego->cldw;
Chris@10 42 cldw->apply(ego->cldw, O);
Chris@10 43 }
Chris@10 44
Chris@10 45 static void apply_dif(const plan *ego_, R *I, R *O)
Chris@10 46 {
Chris@10 47 const P *ego = (const P *) ego_;
Chris@10 48 plan_rdft *cld;
Chris@10 49 plan_hc2hc *cldw;
Chris@10 50
Chris@10 51 cldw = (plan_hc2hc *) ego->cldw;
Chris@10 52 cldw->apply(ego->cldw, I);
Chris@10 53
Chris@10 54 cld = (plan_rdft *) ego->cld;
Chris@10 55 cld->apply(ego->cld, I, O);
Chris@10 56 }
Chris@10 57
Chris@10 58 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 59 {
Chris@10 60 P *ego = (P *) ego_;
Chris@10 61 X(plan_awake)(ego->cld, wakefulness);
Chris@10 62 X(plan_awake)(ego->cldw, wakefulness);
Chris@10 63 }
Chris@10 64
Chris@10 65 static void destroy(plan *ego_)
Chris@10 66 {
Chris@10 67 P *ego = (P *) ego_;
Chris@10 68 X(plan_destroy_internal)(ego->cldw);
Chris@10 69 X(plan_destroy_internal)(ego->cld);
Chris@10 70 }
Chris@10 71
Chris@10 72 static void print(const plan *ego_, printer *p)
Chris@10 73 {
Chris@10 74 const P *ego = (const P *) ego_;
Chris@10 75 p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))",
Chris@10 76 ego->super.apply == apply_dit ? "dit" : "dif",
Chris@10 77 ego->r, ego->cldw, ego->cld);
Chris@10 78 }
Chris@10 79
Chris@10 80 static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@10 81 {
Chris@10 82 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 83 INT r;
Chris@10 84
Chris@10 85 return (1
Chris@10 86 && p->sz->rnk == 1
Chris@10 87 && p->vecsz->rnk <= 1
Chris@10 88
Chris@10 89 && (/* either the problem is R2HC, which is solved by DIT */
Chris@10 90 (p->kind[0] == R2HC)
Chris@10 91 ||
Chris@10 92 /* or the problem is HC2R, in which case it is solved
Chris@10 93 by DIF, which destroys the input */
Chris@10 94 (p->kind[0] == HC2R &&
Chris@10 95 (p->I == p->O || !NO_DESTROY_INPUTP(plnr))))
Chris@10 96
Chris@10 97 && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
Chris@10 98 && p->sz->dims[0].n > r);
Chris@10 99 }
Chris@10 100
Chris@10 101 int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@10 102 {
Chris@10 103 const problem_rdft *p;
Chris@10 104
Chris@10 105 if (!applicable0(ego, p_, plnr))
Chris@10 106 return 0;
Chris@10 107
Chris@10 108 p = (const problem_rdft *) p_;
Chris@10 109
Chris@10 110 return (0
Chris@10 111 || p->vecsz->rnk == 0
Chris@10 112 || !NO_VRECURSEP(plnr)
Chris@10 113 );
Chris@10 114 }
Chris@10 115
Chris@10 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 117 {
Chris@10 118 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
Chris@10 119 const problem_rdft *p;
Chris@10 120 P *pln = 0;
Chris@10 121 plan *cld = 0, *cldw = 0;
Chris@10 122 INT n, r, m, v, ivs, ovs;
Chris@10 123 iodim *d;
Chris@10 124
Chris@10 125 static const plan_adt padt = {
Chris@10 126 X(rdft_solve), awake, print, destroy
Chris@10 127 };
Chris@10 128
Chris@10 129 if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr))
Chris@10 130 return (plan *) 0;
Chris@10 131
Chris@10 132 p = (const problem_rdft *) p_;
Chris@10 133 d = p->sz->dims;
Chris@10 134 n = d[0].n;
Chris@10 135 r = X(choose_radix)(ego->r, n);
Chris@10 136 m = n / r;
Chris@10 137
Chris@10 138 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
Chris@10 139
Chris@10 140 switch (p->kind[0]) {
Chris@10 141 case R2HC:
Chris@10 142 cldw = ego->mkcldw(ego,
Chris@10 143 R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2,
Chris@10 144 p->O, plnr);
Chris@10 145 if (!cldw) goto nada;
Chris@10 146
Chris@10 147 cld = X(mkplan_d)(plnr,
Chris@10 148 X(mkproblem_rdft_d)(
Chris@10 149 X(mktensor_1d)(m, r * d[0].is, d[0].os),
Chris@10 150 X(mktensor_2d)(r, d[0].is, m * d[0].os,
Chris@10 151 v, ivs, ovs),
Chris@10 152 p->I, p->O, p->kind)
Chris@10 153 );
Chris@10 154 if (!cld) goto nada;
Chris@10 155
Chris@10 156 pln = MKPLAN_RDFT(P, &padt, apply_dit);
Chris@10 157 break;
Chris@10 158
Chris@10 159 case HC2R:
Chris@10 160 cldw = ego->mkcldw(ego,
Chris@10 161 HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2,
Chris@10 162 p->I, plnr);
Chris@10 163 if (!cldw) goto nada;
Chris@10 164
Chris@10 165 cld = X(mkplan_d)(plnr,
Chris@10 166 X(mkproblem_rdft_d)(
Chris@10 167 X(mktensor_1d)(m, d[0].is, r * d[0].os),
Chris@10 168 X(mktensor_2d)(r, m * d[0].is, d[0].os,
Chris@10 169 v, ivs, ovs),
Chris@10 170 p->I, p->O, p->kind)
Chris@10 171 );
Chris@10 172 if (!cld) goto nada;
Chris@10 173
Chris@10 174 pln = MKPLAN_RDFT(P, &padt, apply_dif);
Chris@10 175 break;
Chris@10 176
Chris@10 177 default:
Chris@10 178 A(0);
Chris@10 179 }
Chris@10 180
Chris@10 181 pln->cld = cld;
Chris@10 182 pln->cldw = cldw;
Chris@10 183 pln->r = r;
Chris@10 184 X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
Chris@10 185
Chris@10 186 /* inherit could_prune_now_p attribute from cldw */
Chris@10 187 pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
Chris@10 188
Chris@10 189 return &(pln->super.super);
Chris@10 190
Chris@10 191 nada:
Chris@10 192 X(plan_destroy_internal)(cldw);
Chris@10 193 X(plan_destroy_internal)(cld);
Chris@10 194 return (plan *) 0;
Chris@10 195 }
Chris@10 196
Chris@10 197 hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw)
Chris@10 198 {
Chris@10 199 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 200 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
Chris@10 201 slv->r = r;
Chris@10 202 slv->mkcldw = mkcldw;
Chris@10 203 return slv;
Chris@10 204 }
Chris@10 205
Chris@10 206 plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply)
Chris@10 207 {
Chris@10 208 plan_hc2hc *ego;
Chris@10 209
Chris@10 210 ego = (plan_hc2hc *) X(mkplan)(size, adt);
Chris@10 211 ego->apply = apply;
Chris@10 212
Chris@10 213 return &(ego->super);
Chris@10 214 }