annotate src/fftw-3.3.3/rdft/hc2hc.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #include "hc2hc.h"
Chris@10 22
Chris@10 23 hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0;
Chris@10 24
Chris@10 25 typedef struct {
Chris@10 26 plan_rdft super;
Chris@10 27 plan *cld;
Chris@10 28 plan *cldw;
Chris@10 29 INT r;
Chris@10 30 } P;
Chris@10 31
Chris@10 32 static void apply_dit(const plan *ego_, R *I, R *O)
Chris@10 33 {
Chris@10 34 const P *ego = (const P *) ego_;
Chris@10 35 plan_rdft *cld;
Chris@10 36 plan_hc2hc *cldw;
Chris@10 37
Chris@10 38 cld = (plan_rdft *) ego->cld;
Chris@10 39 cld->apply(ego->cld, I, O);
Chris@10 40
Chris@10 41 cldw = (plan_hc2hc *) ego->cldw;
Chris@10 42 cldw->apply(ego->cldw, O);
Chris@10 43 }
Chris@10 44
Chris@10 45 static void apply_dif(const plan *ego_, R *I, R *O)
Chris@10 46 {
Chris@10 47 const P *ego = (const P *) ego_;
Chris@10 48 plan_rdft *cld;
Chris@10 49 plan_hc2hc *cldw;
Chris@10 50
Chris@10 51 cldw = (plan_hc2hc *) ego->cldw;
Chris@10 52 cldw->apply(ego->cldw, I);
Chris@10 53
Chris@10 54 cld = (plan_rdft *) ego->cld;
Chris@10 55 cld->apply(ego->cld, I, O);
Chris@10 56 }
Chris@10 57
Chris@10 58 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 59 {
Chris@10 60 P *ego = (P *) ego_;
Chris@10 61 X(plan_awake)(ego->cld, wakefulness);
Chris@10 62 X(plan_awake)(ego->cldw, wakefulness);
Chris@10 63 }
Chris@10 64
Chris@10 65 static void destroy(plan *ego_)
Chris@10 66 {
Chris@10 67 P *ego = (P *) ego_;
Chris@10 68 X(plan_destroy_internal)(ego->cldw);
Chris@10 69 X(plan_destroy_internal)(ego->cld);
Chris@10 70 }
Chris@10 71
Chris@10 72 static void print(const plan *ego_, printer *p)
Chris@10 73 {
Chris@10 74 const P *ego = (const P *) ego_;
Chris@10 75 p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))",
Chris@10 76 ego->super.apply == apply_dit ? "dit" : "dif",
Chris@10 77 ego->r, ego->cldw, ego->cld);
Chris@10 78 }
Chris@10 79
Chris@10 80 static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@10 81 {
Chris@10 82 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 83 INT r;
Chris@10 84
Chris@10 85 return (1
Chris@10 86 && p->sz->rnk == 1
Chris@10 87 && p->vecsz->rnk <= 1
Chris@10 88
Chris@10 89 && (/* either the problem is R2HC, which is solved by DIT */
Chris@10 90 (p->kind[0] == R2HC)
Chris@10 91 ||
Chris@10 92 /* or the problem is HC2R, in which case it is solved
Chris@10 93 by DIF, which destroys the input */
Chris@10 94 (p->kind[0] == HC2R &&
Chris@10 95 (p->I == p->O || !NO_DESTROY_INPUTP(plnr))))
Chris@10 96
Chris@10 97 && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
Chris@10 98 && p->sz->dims[0].n > r);
Chris@10 99 }
Chris@10 100
Chris@10 101 int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr)
Chris@10 102 {
Chris@10 103 const problem_rdft *p;
Chris@10 104
Chris@10 105 if (!applicable0(ego, p_, plnr))
Chris@10 106 return 0;
Chris@10 107
Chris@10 108 p = (const problem_rdft *) p_;
Chris@10 109
Chris@10 110 return (0
Chris@10 111 || p->vecsz->rnk == 0
Chris@10 112 || !NO_VRECURSEP(plnr)
Chris@10 113 );
Chris@10 114 }
Chris@10 115
Chris@10 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 117 {
Chris@10 118 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
Chris@10 119 const problem_rdft *p;
Chris@10 120 P *pln = 0;
Chris@10 121 plan *cld = 0, *cldw = 0;
Chris@10 122 INT n, r, m, v, ivs, ovs;
Chris@10 123 iodim *d;
Chris@10 124
Chris@10 125 static const plan_adt padt = {
Chris@10 126 X(rdft_solve), awake, print, destroy
Chris@10 127 };
Chris@10 128
Chris@10 129 if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr))
Chris@10 130 return (plan *) 0;
Chris@10 131
Chris@10 132 p = (const problem_rdft *) p_;
Chris@10 133 d = p->sz->dims;
Chris@10 134 n = d[0].n;
Chris@10 135 r = X(choose_radix)(ego->r, n);
Chris@10 136 m = n / r;
Chris@10 137
Chris@10 138 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
Chris@10 139
Chris@10 140 switch (p->kind[0]) {
Chris@10 141 case R2HC:
Chris@10 142 cldw = ego->mkcldw(ego,
Chris@10 143 R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2,
Chris@10 144 p->O, plnr);
Chris@10 145 if (!cldw) goto nada;
Chris@10 146
Chris@10 147 cld = X(mkplan_d)(plnr,
Chris@10 148 X(mkproblem_rdft_d)(
Chris@10 149 X(mktensor_1d)(m, r * d[0].is, d[0].os),
Chris@10 150 X(mktensor_2d)(r, d[0].is, m * d[0].os,
Chris@10 151 v, ivs, ovs),
Chris@10 152 p->I, p->O, p->kind)
Chris@10 153 );
Chris@10 154 if (!cld) goto nada;
Chris@10 155
Chris@10 156 pln = MKPLAN_RDFT(P, &padt, apply_dit);
Chris@10 157 break;
Chris@10 158
Chris@10 159 case HC2R:
Chris@10 160 cldw = ego->mkcldw(ego,
Chris@10 161 HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2,
Chris@10 162 p->I, plnr);
Chris@10 163 if (!cldw) goto nada;
Chris@10 164
Chris@10 165 cld = X(mkplan_d)(plnr,
Chris@10 166 X(mkproblem_rdft_d)(
Chris@10 167 X(mktensor_1d)(m, d[0].is, r * d[0].os),
Chris@10 168 X(mktensor_2d)(r, m * d[0].is, d[0].os,
Chris@10 169 v, ivs, ovs),
Chris@10 170 p->I, p->O, p->kind)
Chris@10 171 );
Chris@10 172 if (!cld) goto nada;
Chris@10 173
Chris@10 174 pln = MKPLAN_RDFT(P, &padt, apply_dif);
Chris@10 175 break;
Chris@10 176
Chris@10 177 default:
Chris@10 178 A(0);
Chris@10 179 }
Chris@10 180
Chris@10 181 pln->cld = cld;
Chris@10 182 pln->cldw = cldw;
Chris@10 183 pln->r = r;
Chris@10 184 X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
Chris@10 185
Chris@10 186 /* inherit could_prune_now_p attribute from cldw */
Chris@10 187 pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
Chris@10 188
Chris@10 189 return &(pln->super.super);
Chris@10 190
Chris@10 191 nada:
Chris@10 192 X(plan_destroy_internal)(cldw);
Chris@10 193 X(plan_destroy_internal)(cld);
Chris@10 194 return (plan *) 0;
Chris@10 195 }
Chris@10 196
Chris@10 197 hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw)
Chris@10 198 {
Chris@10 199 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 200 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
Chris@10 201 slv->r = r;
Chris@10 202 slv->mkcldw = mkcldw;
Chris@10 203 return slv;
Chris@10 204 }
Chris@10 205
Chris@10 206 plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply)
Chris@10 207 {
Chris@10 208 plan_hc2hc *ego;
Chris@10 209
Chris@10 210 ego = (plan_hc2hc *) X(mkplan)(size, adt);
Chris@10 211 ego->apply = apply;
Chris@10 212
Chris@10 213 return &(ego->super);
Chris@10 214 }