| Chris@10 | 1 <html lang="en"> | 
| Chris@10 | 2 <head> | 
| Chris@10 | 3 <title>Multi-Dimensional DFTs of Real Data - FFTW 3.3.3</title> | 
| Chris@10 | 4 <meta http-equiv="Content-Type" content="text/html"> | 
| Chris@10 | 5 <meta name="description" content="FFTW 3.3.3"> | 
| Chris@10 | 6 <meta name="generator" content="makeinfo 4.13"> | 
| Chris@10 | 7 <link title="Top" rel="start" href="index.html#Top"> | 
| Chris@10 | 8 <link rel="up" href="Tutorial.html#Tutorial" title="Tutorial"> | 
| Chris@10 | 9 <link rel="prev" href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" title="One-Dimensional DFTs of Real Data"> | 
| Chris@10 | 10 <link rel="next" href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" title="More DFTs of Real Data"> | 
| Chris@10 | 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> | 
| Chris@10 | 12 <!-- | 
| Chris@10 | 13 This manual is for FFTW | 
| Chris@10 | 14 (version 3.3.3, 25 November 2012). | 
| Chris@10 | 15 | 
| Chris@10 | 16 Copyright (C) 2003 Matteo Frigo. | 
| Chris@10 | 17 | 
| Chris@10 | 18 Copyright (C) 2003 Massachusetts Institute of Technology. | 
| Chris@10 | 19 | 
| Chris@10 | 20      Permission is granted to make and distribute verbatim copies of | 
| Chris@10 | 21      this manual provided the copyright notice and this permission | 
| Chris@10 | 22      notice are preserved on all copies. | 
| Chris@10 | 23 | 
| Chris@10 | 24      Permission is granted to copy and distribute modified versions of | 
| Chris@10 | 25      this manual under the conditions for verbatim copying, provided | 
| Chris@10 | 26      that the entire resulting derived work is distributed under the | 
| Chris@10 | 27      terms of a permission notice identical to this one. | 
| Chris@10 | 28 | 
| Chris@10 | 29      Permission is granted to copy and distribute translations of this | 
| Chris@10 | 30      manual into another language, under the above conditions for | 
| Chris@10 | 31      modified versions, except that this permission notice may be | 
| Chris@10 | 32      stated in a translation approved by the Free Software Foundation. | 
| Chris@10 | 33    --> | 
| Chris@10 | 34 <meta http-equiv="Content-Style-Type" content="text/css"> | 
| Chris@10 | 35 <style type="text/css"><!-- | 
| Chris@10 | 36   pre.display { font-family:inherit } | 
| Chris@10 | 37   pre.format  { font-family:inherit } | 
| Chris@10 | 38   pre.smalldisplay { font-family:inherit; font-size:smaller } | 
| Chris@10 | 39   pre.smallformat  { font-family:inherit; font-size:smaller } | 
| Chris@10 | 40   pre.smallexample { font-size:smaller } | 
| Chris@10 | 41   pre.smalllisp    { font-size:smaller } | 
| Chris@10 | 42   span.sc    { font-variant:small-caps } | 
| Chris@10 | 43   span.roman { font-family:serif; font-weight:normal; } | 
| Chris@10 | 44   span.sansserif { font-family:sans-serif; font-weight:normal; } | 
| Chris@10 | 45 --></style> | 
| Chris@10 | 46 </head> | 
| Chris@10 | 47 <body> | 
| Chris@10 | 48 <div class="node"> | 
| Chris@10 | 49 <a name="Multi-Dimensional-DFTs-of-Real-Data"></a> | 
| Chris@10 | 50 <a name="Multi_002dDimensional-DFTs-of-Real-Data"></a> | 
| Chris@10 | 51 <p> | 
| Chris@10 | 52 Next: <a rel="next" accesskey="n" href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data">More DFTs of Real Data</a>, | 
| Chris@10 | 53 Previous: <a rel="previous" accesskey="p" href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data">One-Dimensional DFTs of Real Data</a>, | 
| Chris@10 | 54 Up: <a rel="up" accesskey="u" href="Tutorial.html#Tutorial">Tutorial</a> | 
| Chris@10 | 55 <hr> | 
| Chris@10 | 56 </div> | 
| Chris@10 | 57 | 
| Chris@10 | 58 <h3 class="section">2.4 Multi-Dimensional DFTs of Real Data</h3> | 
| Chris@10 | 59 | 
| Chris@10 | 60 <p>Multi-dimensional DFTs of real data use the following planner routines: | 
| Chris@10 | 61 | 
| Chris@10 | 62 <pre class="example">     fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1, | 
| Chris@10 | 63                                     double *in, fftw_complex *out, | 
| Chris@10 | 64                                     unsigned flags); | 
| Chris@10 | 65      fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2, | 
| Chris@10 | 66                                     double *in, fftw_complex *out, | 
| Chris@10 | 67                                     unsigned flags); | 
| Chris@10 | 68      fftw_plan fftw_plan_dft_r2c(int rank, const int *n, | 
| Chris@10 | 69                                  double *in, fftw_complex *out, | 
| Chris@10 | 70                                  unsigned flags); | 
| Chris@10 | 71 </pre> | 
| Chris@10 | 72    <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-59"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-60"></a><a name="index-fftw_005fplan_005fdft_005fr2c-61"></a> | 
| Chris@10 | 73 as well as the corresponding <code>c2r</code> routines with the input/output | 
| Chris@10 | 74 types swapped.  These routines work similarly to their complex | 
| Chris@10 | 75 analogues, except for the fact that here the complex output array is cut | 
| Chris@10 | 76 roughly in half and the real array requires padding for in-place | 
| Chris@10 | 77 transforms (as in 1d, above). | 
| Chris@10 | 78 | 
| Chris@10 | 79    <p>As before, <code>n</code> is the logical size of the array, and the | 
| Chris@10 | 80 consequences of this on the the format of the complex arrays deserve | 
| Chris@10 | 81 careful attention. | 
| Chris@10 | 82 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format-62"></a>Suppose that the real data has dimensions n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> (in row-major order). | 
| Chris@10 | 83 Then, after an r2c transform, the output is an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) array of | 
| Chris@10 | 84 <code>fftw_complex</code> values in row-major order, corresponding to slightly | 
| Chris@10 | 85 over half of the output of the corresponding complex DFT.  (The division | 
| Chris@10 | 86 is rounded down.)  The ordering of the data is otherwise exactly the | 
| Chris@10 | 87 same as in the complex-DFT case. | 
| Chris@10 | 88 | 
| Chris@10 | 89    <p>For out-of-place transforms, this is the end of the story: the real | 
| Chris@10 | 90 data is stored as a row-major array of size n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> and the complex | 
| Chris@10 | 91 data is stored as a row-major array of size n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1). | 
| Chris@10 | 92 | 
| Chris@10 | 93    <p>For in-place transforms, however, extra padding of the real-data array | 
| Chris@10 | 94 is necessary because the complex array is larger than the real array, | 
| Chris@10 | 95 and the two arrays share the same memory locations.  Thus, for | 
| Chris@10 | 96 in-place transforms, the final dimension of the real-data array must | 
| Chris@10 | 97 be padded with extra values to accommodate the size of the complex | 
| Chris@10 | 98 data—two values if the last dimension is even and one if it is odd. | 
| Chris@10 | 99 <a name="index-padding-63"></a>That is, the last dimension of the real data must physically contain | 
| Chris@10 | 100 2 * (n<sub>d-1</sub>/2+1)<code>double</code> values (exactly enough to hold the complex data). | 
| Chris@10 | 101 This physical array size does not, however, change the <em>logical</em> | 
| Chris@10 | 102 array size—only | 
| Chris@10 | 103 n<sub>d-1</sub>values are actually stored in the last dimension, and | 
| Chris@10 | 104 n<sub>d-1</sub>is the last dimension passed to the plan-creation routine. | 
| Chris@10 | 105 | 
| Chris@10 | 106    <p>For example, consider the transform of a two-dimensional real array of | 
| Chris@10 | 107 size <code>n0</code> by <code>n1</code>.  The output of the r2c transform is a | 
| Chris@10 | 108 two-dimensional complex array of size <code>n0</code> by <code>n1/2+1</code>, where | 
| Chris@10 | 109 the <code>y</code> dimension has been cut nearly in half because of | 
| Chris@10 | 110 redundancies in the output.  Because <code>fftw_complex</code> is twice the | 
| Chris@10 | 111 size of <code>double</code>, the output array is slightly bigger than the | 
| Chris@10 | 112 input array.  Thus, if we want to compute the transform in place, we | 
| Chris@10 | 113 must <em>pad</em> the input array so that it is of size <code>n0</code> by | 
| Chris@10 | 114 <code>2*(n1/2+1)</code>.  If <code>n1</code> is even, then there are two padding | 
| Chris@10 | 115 elements at the end of each row (which need not be initialized, as they | 
| Chris@10 | 116 are only used for output). | 
| Chris@10 | 117 | 
| Chris@10 | 118    <p>The following illustration depicts the input and output arrays just | 
| Chris@10 | 119 described, for both the out-of-place and in-place transforms (with the | 
| Chris@10 | 120 arrows indicating consecutive memory locations): | 
| Chris@10 | 121 <img src="rfftwnd-for-html.png" alt="rfftwnd-for-html.png"> | 
| Chris@10 | 122 | 
| Chris@10 | 123    <p>These transforms are unnormalized, so an r2c followed by a c2r | 
| Chris@10 | 124 transform (or vice versa) will result in the original data scaled by | 
| Chris@10 | 125 the number of real data elements—that is, the product of the | 
| Chris@10 | 126 (logical) dimensions of the real data. | 
| Chris@10 | 127 <a name="index-normalization-64"></a> | 
| Chris@10 | 128 | 
| Chris@10 | 129    <p>(Because the last dimension is treated specially, if it is equal to | 
| Chris@10 | 130 <code>1</code> the transform is <em>not</em> equivalent to a lower-dimensional | 
| Chris@10 | 131 r2c/c2r transform.  In that case, the last complex dimension also has | 
| Chris@10 | 132 size <code>1</code> (<code>=1/2+1</code>), and no advantage is gained over the | 
| Chris@10 | 133 complex transforms.) | 
| Chris@10 | 134 | 
| Chris@10 | 135 <!--  --> | 
| Chris@10 | 136    </body></html> | 
| Chris@10 | 137 |