annotate src/fftw-3.3.3/doc/html/Multi_002dDimensional-DFTs-of-Real-Data.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 <html lang="en">
Chris@10 2 <head>
Chris@10 3 <title>Multi-Dimensional DFTs of Real Data - FFTW 3.3.3</title>
Chris@10 4 <meta http-equiv="Content-Type" content="text/html">
Chris@10 5 <meta name="description" content="FFTW 3.3.3">
Chris@10 6 <meta name="generator" content="makeinfo 4.13">
Chris@10 7 <link title="Top" rel="start" href="index.html#Top">
Chris@10 8 <link rel="up" href="Tutorial.html#Tutorial" title="Tutorial">
Chris@10 9 <link rel="prev" href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data" title="One-Dimensional DFTs of Real Data">
Chris@10 10 <link rel="next" href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data" title="More DFTs of Real Data">
Chris@10 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
Chris@10 12 <!--
Chris@10 13 This manual is for FFTW
Chris@10 14 (version 3.3.3, 25 November 2012).
Chris@10 15
Chris@10 16 Copyright (C) 2003 Matteo Frigo.
Chris@10 17
Chris@10 18 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@10 19
Chris@10 20 Permission is granted to make and distribute verbatim copies of
Chris@10 21 this manual provided the copyright notice and this permission
Chris@10 22 notice are preserved on all copies.
Chris@10 23
Chris@10 24 Permission is granted to copy and distribute modified versions of
Chris@10 25 this manual under the conditions for verbatim copying, provided
Chris@10 26 that the entire resulting derived work is distributed under the
Chris@10 27 terms of a permission notice identical to this one.
Chris@10 28
Chris@10 29 Permission is granted to copy and distribute translations of this
Chris@10 30 manual into another language, under the above conditions for
Chris@10 31 modified versions, except that this permission notice may be
Chris@10 32 stated in a translation approved by the Free Software Foundation.
Chris@10 33 -->
Chris@10 34 <meta http-equiv="Content-Style-Type" content="text/css">
Chris@10 35 <style type="text/css"><!--
Chris@10 36 pre.display { font-family:inherit }
Chris@10 37 pre.format { font-family:inherit }
Chris@10 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
Chris@10 39 pre.smallformat { font-family:inherit; font-size:smaller }
Chris@10 40 pre.smallexample { font-size:smaller }
Chris@10 41 pre.smalllisp { font-size:smaller }
Chris@10 42 span.sc { font-variant:small-caps }
Chris@10 43 span.roman { font-family:serif; font-weight:normal; }
Chris@10 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
Chris@10 45 --></style>
Chris@10 46 </head>
Chris@10 47 <body>
Chris@10 48 <div class="node">
Chris@10 49 <a name="Multi-Dimensional-DFTs-of-Real-Data"></a>
Chris@10 50 <a name="Multi_002dDimensional-DFTs-of-Real-Data"></a>
Chris@10 51 <p>
Chris@10 52 Next:&nbsp;<a rel="next" accesskey="n" href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data">More DFTs of Real Data</a>,
Chris@10 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="One_002dDimensional-DFTs-of-Real-Data.html#One_002dDimensional-DFTs-of-Real-Data">One-Dimensional DFTs of Real Data</a>,
Chris@10 54 Up:&nbsp;<a rel="up" accesskey="u" href="Tutorial.html#Tutorial">Tutorial</a>
Chris@10 55 <hr>
Chris@10 56 </div>
Chris@10 57
Chris@10 58 <h3 class="section">2.4 Multi-Dimensional DFTs of Real Data</h3>
Chris@10 59
Chris@10 60 <p>Multi-dimensional DFTs of real data use the following planner routines:
Chris@10 61
Chris@10 62 <pre class="example"> fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
Chris@10 63 double *in, fftw_complex *out,
Chris@10 64 unsigned flags);
Chris@10 65 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
Chris@10 66 double *in, fftw_complex *out,
Chris@10 67 unsigned flags);
Chris@10 68 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
Chris@10 69 double *in, fftw_complex *out,
Chris@10 70 unsigned flags);
Chris@10 71 </pre>
Chris@10 72 <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-59"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-60"></a><a name="index-fftw_005fplan_005fdft_005fr2c-61"></a>
Chris@10 73 as well as the corresponding <code>c2r</code> routines with the input/output
Chris@10 74 types swapped. These routines work similarly to their complex
Chris@10 75 analogues, except for the fact that here the complex output array is cut
Chris@10 76 roughly in half and the real array requires padding for in-place
Chris@10 77 transforms (as in 1d, above).
Chris@10 78
Chris@10 79 <p>As before, <code>n</code> is the logical size of the array, and the
Chris@10 80 consequences of this on the the format of the complex arrays deserve
Chris@10 81 careful attention.
Chris@10 82 <a name="index-r2c_002fc2r-multi_002ddimensional-array-format-62"></a>Suppose that the real data has dimensions n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> (in row-major order).
Chris@10 83 Then, after an r2c transform, the output is an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1) array of
Chris@10 84 <code>fftw_complex</code> values in row-major order, corresponding to slightly
Chris@10 85 over half of the output of the corresponding complex DFT. (The division
Chris@10 86 is rounded down.) The ordering of the data is otherwise exactly the
Chris@10 87 same as in the complex-DFT case.
Chris@10 88
Chris@10 89 <p>For out-of-place transforms, this is the end of the story: the real
Chris@10 90 data is stored as a row-major array of size n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> and the complex
Chris@10 91 data is stored as a row-major array of size n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1).
Chris@10 92
Chris@10 93 <p>For in-place transforms, however, extra padding of the real-data array
Chris@10 94 is necessary because the complex array is larger than the real array,
Chris@10 95 and the two arrays share the same memory locations. Thus, for
Chris@10 96 in-place transforms, the final dimension of the real-data array must
Chris@10 97 be padded with extra values to accommodate the size of the complex
Chris@10 98 data&mdash;two values if the last dimension is even and one if it is odd.
Chris@10 99 <a name="index-padding-63"></a>That is, the last dimension of the real data must physically contain
Chris@10 100 2 * (n<sub>d-1</sub>/2+1)<code>double</code> values (exactly enough to hold the complex data).
Chris@10 101 This physical array size does not, however, change the <em>logical</em>
Chris@10 102 array size&mdash;only
Chris@10 103 n<sub>d-1</sub>values are actually stored in the last dimension, and
Chris@10 104 n<sub>d-1</sub>is the last dimension passed to the plan-creation routine.
Chris@10 105
Chris@10 106 <p>For example, consider the transform of a two-dimensional real array of
Chris@10 107 size <code>n0</code> by <code>n1</code>. The output of the r2c transform is a
Chris@10 108 two-dimensional complex array of size <code>n0</code> by <code>n1/2+1</code>, where
Chris@10 109 the <code>y</code> dimension has been cut nearly in half because of
Chris@10 110 redundancies in the output. Because <code>fftw_complex</code> is twice the
Chris@10 111 size of <code>double</code>, the output array is slightly bigger than the
Chris@10 112 input array. Thus, if we want to compute the transform in place, we
Chris@10 113 must <em>pad</em> the input array so that it is of size <code>n0</code> by
Chris@10 114 <code>2*(n1/2+1)</code>. If <code>n1</code> is even, then there are two padding
Chris@10 115 elements at the end of each row (which need not be initialized, as they
Chris@10 116 are only used for output).
Chris@10 117
Chris@10 118 <p>The following illustration depicts the input and output arrays just
Chris@10 119 described, for both the out-of-place and in-place transforms (with the
Chris@10 120 arrows indicating consecutive memory locations):
Chris@10 121 <img src="rfftwnd-for-html.png" alt="rfftwnd-for-html.png">
Chris@10 122
Chris@10 123 <p>These transforms are unnormalized, so an r2c followed by a c2r
Chris@10 124 transform (or vice versa) will result in the original data scaled by
Chris@10 125 the number of real data elements&mdash;that is, the product of the
Chris@10 126 (logical) dimensions of the real data.
Chris@10 127 <a name="index-normalization-64"></a>
Chris@10 128
Chris@10 129 <p>(Because the last dimension is treated specially, if it is equal to
Chris@10 130 <code>1</code> the transform is <em>not</em> equivalent to a lower-dimensional
Chris@10 131 r2c/c2r transform. In that case, the last complex dimension also has
Chris@10 132 size <code>1</code> (<code>=1/2+1</code>), and no advantage is gained over the
Chris@10 133 complex transforms.)
Chris@10 134
Chris@10 135 <!-- -->
Chris@10 136 </body></html>
Chris@10 137